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Simulation study of twisted crystal growth in organic thin films

Alta Fang”
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA

Mikko Haataja'

Department of Mechanical and Aerospace Engineering, Princeton Institute for the Science and Technology of Materials (PRISM),
the Andlinger Center for Energy and the Environment (ACEE), and Program in Applied and Computational Mathematics (PACM),

Princeton University, Princeton, New Jersey 08544, USA
(Received 1 September 2015; published 15 October 2015)

Many polymer and organic small-molecule thin films crystallize with microstructures that twist or curve in
a regular manner as crystal growth proceeds. Here we present a phase-field model that energetically favors
twisting of the three-dimensional crystalline orientation about and along particular axes, allowing morphologies
such as banded spherulites, curved dendrites, and “s”- or “c”’-shaped needle crystals to be simulated. When
twisting about the fast-growing crystalline axis is energetically favored and spherulitic growth conditions are
imposed, crystallization occurs in the form of banded spherulites composed of radially oriented twisted crystalline
fibers. Due to the lack of symmetry, twisting along the normal growth direction leads to heterochiral banded
spherulites with opposite twist handedness in each half of the spherulite. When twisting is instead favored about
the axis perpendicular to the plane of the substrate and along the normal growth direction under diffusion-limited
single-crystalline growth conditions, crystallization occurs in the form of curved dendrites with uniformly
rotating branches. We show that the rate at which the branches curve affects not only the morphology but also the
overall kinetics of crystallization, as the total crystallized area at a given time is maximized for a finite turning

rate.
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I. INTRODUCTION

Organic thin films can crystallize in a wide array of complex
morphologies, ranging from polycrystalline spherulites to
single-crystalline dendrites [1], and the microstructure of a
thin film can significantly affect its properties [2]. In particular,
polymers as well as some organic small molecules tend to
crystallize in the form of anisotropic ribbon-shaped lamella
composed of folded polymer chains or stacked molecules,
as geometric frustration leads these materials to form a
kinetically trapped metastable structure. One phenomenon
that has attracted considerable attention in these systems is
twisted crystal growth, where the local crystalline orientation
gradually varies in space, turning consistently in one direction
as growth proceeds [3,4]. One common example of twisting
occurs in some spherulites that exhibit concentric ring bands
when viewed under an optical microscope. Many of these
banded spherulites have been shown to be composed of radially
oriented helically twisting lamella, as demonstrated by circular
birefringence, atomic force microscopy (AFM), and scanning
electron microscopy (SEM) images [5,6]. Other curved crys-
tallization morphologies, such as dendrites with uniformly
rotating branches, have been observed in poly(L-lactide)—
poly(D-lactide) (PLLA-PDLA) blend thin films [7,8].

Multiple theories have been proposed for the mechanisms
of twisted crystallization, including bending moments induced
by mismatched lamellar surface stresses due to tilt of the
polymer chain-folding direction relative to the lamellar sur-
face [9,10], self-induced compositional or mechanical fields
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that lead crystal growth to occur faster if twisting occurs
[11,12], and autodeformation due to heterometry strains where
inhomogeneities lead to strains that multiply through positive
feedback [3,13]. The reasons for twisting are thus still not fully
understood, and it is likely that different causes for twisting
are active under different conditions [3,4].

Modeling efforts so far have focused on understanding
how and why individual lamella twist [10,11,14,15], but less
work has been done on modeling their collective behavior
[6,16]. The larger-scale crystallization morphologies of these
systems can be complex, since in twisted banded spherulites,
lamella not only twist but also splay and may twist with
different chirality in different regions of the spherulite. To
model the formation of these crystallization patterns, one can
simply assume that there exists a thermodynamic driving force
for twisting without necessarily specifying the mechanism
for twisting. Phase-field modeling represents a promising
approach to study crystal growth under this assumption, since
it uses physically based phenomenological expressions to
describe the thermodynamics and kinetics of a system. Indeed,
phase-field models have already been used to extensively
reproduce a variety of spherulitic and dendritic polycrystalline
morphologies [17], simulate banded spherulites that result
from rhythmic growth [18,19], and model ripple formation
during polymer crystallization [20], but here we extend them
to study twisting behavior.

Motivated by the many experimentally observed occur-
rences of twisting in thin film crystallization, here we present a
model that postulates a thermodynamic free energy that favors
aconstant rate of orientational twisting in the crystalline phase.
We use a phase-field model to study pattern formation on
length scales of tens to hundreds of microns without resolving
the details of individual molecules or lamella. Here we treat
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films as two dimensional (2D) since we assume films to be
uniform through their thicknesses, and we treat the initial state
of a film as a disordered amorphous phase such as a melt,
which subsequently undergoes a first-order phase transition to
a crystalline phase.

We demonstrate that our model can simulate a wide array of
twisting and curving crystal morphologies that resemble those
seen in experiments, including banded spherulites, curved
dendrites, and “c”-shaped or “s”-shaped crystals. Heterochiral
banded spherulites, in which twisting occurs with opposite
handedness in either half of the spherulite, form when twisting
is energetically favored about the fast-growing crystalline axis
and along the direction of crystal growth. Curved dendrites
with branches that all turn in the same direction form when
twisting is energetically favored about the axis perpendicular
to the substrate and along the direction of crystal growth.
The rate of orientational turning in curved dendrites is found
to affect not only the morphology but also the kinetics of
crystallization, with a maximum areal growth achieved for
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a given crystallization time with a specific, finite turning
rate.

The rest of the manuscript is organized as follows. Section IT
describes our modeling framework, while simulation results
are presented in Sec. III. Finally, Sec. IV gives a summary and
concluding remarks.

II. MODEL

A. Phase-field modeling framework

Our model is based on a phase-field modeling technique
that has previously been used to simulate solidification
processes [21]. We begin by defining a crystallinity order
parameter ¢(7,t), where ¢ = 1 (¢ = 0) denotes the crystalline
(amorphous) phase. We also introduce a unit quaternion
field g(7¥,t) = [q0,q1.92,qg3] that represents the local three-
dimensional (3D) crystalline orientation, which is defined
throughout the whole domain, including the amorphous phase
[22-25]. We construct the following free energy functional:
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where
¢ = cos™'(g33) (6)

and § is the axis along which twisting occurs, while  is the axis about which twisting occurs.

The crystalline orientation represented by a unit quaternion ¢ is the orientation achieved by applying a rotation described by
g to the fixed substrate reference frame {£;, 95, 2, }. Specifically, in Cartesian coordinates, the rotation transformation to arrive
at the crystalline axes {%, 9., 2.} from the substrate axes is given by
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Crystalline axes {%., ., 2.} are attached to a polymer lamella
such that Z. is perpendicular to the disordered fold surface of
the lamella, while %, and ¥, lie in the chain-folding plane with
X. aligned with the fast-crystallizing direction, as shown in
Fig. 1(a). (Note that although the schematic shows a chain-
folded polymer, this alignment can be applied to any material
that crystallizes in a similar structure.) Here we identify the
lamellar orientation with the crystalline orientation and do not
explicitly account for chain tilt, which occurs when chain-
folding stems are not perfectly aligned with lamellar surface
normals [10].

The free energy functional F includes terms accounting
for the presence of crystal-amorphous interfaces, the bulk

@+ — a3 — 43

2(q193 + qoq2)
2(q293 — q0q1) |- @)
9% — 91— 45+ 43

2(q192 — q0q3)
9% — 91 +4;— 43
2(q293 + qoq1)

(

free energy of crystallization, and the orientational energy
in the crystalline phase. Crystal-amorphous interface energy
is incorporated via the term €z|V¢|*/2, while the bulk free
energy of crystallization is given by f(¢,u) and has the
form of a double-well potential in the crystallinity order
parameter ¢, following Ref. [21]. In the present work, u(¥,t)
is a field analogous to the nondimensionalized temperature
which incorporates diffusion-limited transport processes and
which will be further explained below, while @ and y are
parameters that control how u and ¢ are coupled. A mono-
tonically increasing interpolating polynomial p(¢) modulates
the orientational terms to only affect the free energy in
the crystalline phase because f(¢,u) already captures the
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FIG. 1. Schematic of crystallization geometry. (a) A set of axes
{%¢, 9c, 2.} is attached to a crystalline lamella to track its local
3D orientation. When Z. is parallel (perpendicular) to the plane
of the substrate, the orientation is edge-on (flat-on). (b) A twisted
lamella in a banded spherulite alternates between edge-on and flat-on
orientations, rotating 360° over a period P about the axis @ and
along the axis §, which in this case are parallel. The helix schematic
is adapted from Ref. [26]. The orientation of a curved flat-on dendrite
branch also rotates about @ and along §, which in this case are
orthogonal. (c) Attached to the thin films are fixed substrate axes

{£6, 95, &1

energetic costs of misorientations in the amorphous phase
[22].

The misorientation energy in the crystalline phase is
accounted for through a squared gradient term in Vg that
energetically favors a twist rate 7(g,%, P) along the direction
§ and about the axis @ with period P; the numerical formula
for calculating 7(g,, P) will be described below. Note that
here we use a term that is squared rather than linear in Vg
because twisting is often experimentally observed to occur in a
continuous manner [3]. This form of the misorientation energy
effectively treats the stable phase as liquid crystalline rather
than crystalline, since it permits no finite-width stable grain
boundaries [27]. However, because we use kinetics to freeze
in misorientations at the growth front, we find that this form
of the free energy can still lead to effectively polycrystalline
microstructures composed of regions of different crystalline
orientations. Also note that § and @ may depend on the
crystallinity order parameter ¢, providing another coupling
between the orientational and crystallinity order parameters.
In fact, in many of the numerical simulations to be discussed

-V
below, § = — ¢

Vol

Since polymer thin films tend to crystallize with lamella
arranged in either a flat-on or edge-on out-of-plane orientation
[1], we introduce a term h(g ) that energetically favors either
the edge-on or flat-on orientations, which correspond, respec-
tively, to the Z, axis aligned either parallel or perpendicular
to the plane of the substrate, as shown in Fig. 1(a). The
parameter b dictates the height of the energetic barrier between
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the favored out-of-plane orientations, while A controls which
orientation is more energetically favorable. We envision that
A depends on, for example, the processing conditions [28]
or film thickness [1], and have previously used a similar
approach to simulate a variety of nontwisting polycrystalline
microstructures in thin films [29,30].

Given the free energy functional above, the time evolution
is computed as follows:
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where Lagrange multipliers have been used to enforce the unit
length of the quaternions [22-25]. Note that time-dependent
fluctuations are not included in Egs. (8) and (9), since
initializing the amorphous phase with random orientations at
each point provides sufficient noise at the crystal-amorphous
interface to simulate the growth of spherulites and dendrites.

The field u(7,t) in Eq. (11) is analogous to the dimen-
sionless temperature in solid-liquid phase transformations
[21,29,31]. It allows us to simulate diffusion-limited con-
ditions that lead to dendritic or seaweedlike structures. We
envision that physically the conserved quantity in single-
component films is the molecule itself, as densification may
lead to a depletion of crystallizable material ahead of the
crystal growth front. Furthermore, A is a tunable parameter
controlling the degree of diffusion limitation, with a lower
value of A corresponding to a greater degree of diffusion
limitation. More specifically, given the boundary conditions
employed in the simulations and upon setting u = —1 initially,
for 0 < A < 1, a fraction A of the system will crystallize
before the effective undercooling is exhausted, while setting
A > 1 gives rise to compact crystallites that span the whole
system [32]. The u field is, in turn, coupled with the free energy
through m(u) so that as u increases from —1 to 0, the driving
force for crystallization decreases from its initial value to zero
due to depletion of the conserved quantity.

The crystallization mobility M, in Eq. (8) is modulated
to account for a k-fold—symmetric crystalline anisotropy of
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magnitude §. This reflects that organic materials often have
anisotropic structures such that crystal growth proceeds faster
along particular directions [7,33]. Furthermore, we eliminate
all postcrystallization grain growth or coarsening processes
by modulating the orientational mobility M, in Eq. (9) to
be zero in the crystalline phase, consistent with experimental
observations [33,34]. Thus the mobilities of the crystalline and
quaternion fields are given by

M, = My o[1 + 8 cos(k6)], (12)
M, = M, o[l — p(®)], (13)
where
0 =cos™' (A - &) (14)
and P (15)
Vol

subject to the constraint that 0 < § < 1. Note that although we
introduce anisotropy into the crystallization mobility, we do
not account for crystalline symmetries in our calculations of
quaternion misorientations as has been previously suggested
[22], since we have found that doing so leads to pinned topolog-
ical defects in the orientation field and is also not necessary to
produce symmetric crystal shapes. Indeed, some of the twisting
morphologies simulated below, such as heterochiral banded
spherulites, require a lack of crystalline symmetry. In general,
a crystal may have multiple fast-growing directions that are
nevertheless not crystallographically equivalent. Also note that
we do not incorporate any anisotropy in the surface energy,
as the anisotropy in M, is sufficient to generate dendritic
morphologies under diffusion-limited conditions.

B. Numerical implementation

We numerically implement our model using explicit finite
difference time stepping on a uniform 2D grid with periodic
boundary conditions for ¢ and § and no-flux boundary
conditions for u. Laplacians are calculated with a nine-
point stencil and spatial derivatives of the quaternion field
are calculated using the finite volume formulas described
in the Appendix, which use information from corner grid
points to provide a more isotropic implementation of the
derivatives. We initialize the film in the amorphous phase
with random orientations on each grid point following the
algorithm in Ref. [35] and then place a small crystalline seed
with prescribed orientation gy, in the center of the simulation
box. Since ¢ and —¢ correspond to equivalent orientations,
when calculating spatial derivatives of ¢ we use the sign of
éneighbcr such that Eineighbor : écenter > 0, where éneighbor is the
quaternion value in the neighboring grid point and Geeneer 1S
the quaternion in the grid point currently being calculated.
At each time step, the quaternions are renormalized to ensure
that they remain unit length throughout the simulation, since
using Lagrange multipliers alone results in numerical errors
accumulating to produce a drift in quaternion length.

The components of the energetically favored quaternion
twist rate ?(Z],zi), P) are calculated by

_ ql/(évwvel) —4qi

ti(évva) AX

, (16)
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where
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In the limit 8, — 0 and Ax — 0, this quaternion twist rate
corresponds to a continuous rotation by 2w over a period
of length P = 29—’ij, as shown in Fig. 1(b) for a twisting
lamella. This formula for  arises from rotating in a distance
Ax the local quaternion ¢ = [go,4¢1,92,43] by an angle 6, about
the axis W = (w,,wy,w;) to obtain the rotated quaternion
g ', which is calculated by composing the twist rotation p =
[cos %,wx sin %,wy sin 92—’, w, sin %/] with the original rotation
g using quaternion Hamilton multiplication [36]: ¢’ = p q.
For many of the simulations presented below, we energet-
ically favor twisting along the normal growth direction, i.e.,
P
Vol
the free energy functional even though it is undefined in the

bulk yhases. In our numerical implementation, when the vglue
of |[V¢| is below a threshold value of dyfr, We set 1/|V@|
equal to a constant value of 1/dqy,f. Furthermore, the last
term in Eq. (8) is set to zero for ¢ > @cyeofr, SinCe we imagine
that in the crystalline phase, the direction along which twisting
is energetically favored, §, is a constant equal to the value of
i at the time the growth front passed, which the crystal can
“remember” through plastic deformation. Thus, since § no
longer depends on V¢ in the crystalline phase, the last term in
Eq. (8) can be set to zero for ¢ > @cyoft-

In our simulations, we use the following nondimensional-
ized parameter values: N, = N, = 1024, Ax = Ay = 0.01,
At=8x10"", =09,y =10, D =1, My = 1.5 x 10%,
eé =2x 107, 63 =1x 1072, degorr = 1 x 1073, Gecutoft =
0.95. These parameter values were chosen to produce physi-
cally reasonable outputs, since we aim to study the general
behavior of this model rather than simulate a particular
material. The value of €, was chosen to be close to €y,
following other orientational phase-field models [24,25,37],
and increasing €, has an effect similar to increasing M,.
Results are not sensitive to the value of d.yofr, Which can be
any small number, since ¢ and g evolve only at the interface.

. This causes the growth direction 7 to appear in

III. RESULTS

A. Heterochiral banded spherulites

First, we simulate the growth of banded spherulites com-
posed of radially aligned lamella that twist between edge-on
and flat-on orientations, as illustrated in Fig. 1. Note that in
general, banding in spherulites may result from either rhythmic
growth, twisting, or a combination of the two [38,39], but here
we only consider twisting. Heterochiral banded spherulites,
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FIG. 2. (Color online) (a) Snapshots of the growth of a heterochiral banded spherulite at 40 000, 80 000, 120 000, and 160 000 time steps.
The colors in the crystalline phase represent the in-plane lamellar orientation angle 6 of the fast-growing crystalline direction %., while the
amorphous phase is shown in gray. (b) A plot of 6 with overlaid arrows showing the in-plane direction of %., which is aligned with the radial
growth direction. (c) The out-of-plane lamellar orientation angle 8 twists between edge-on (8 = 0°) and flat-on (8 = £90°) orientations.
Overlaid is the same arrow field as in (b). (d) The top (bottom) half of the spherulite exhibits twisting with right-handed (left-handed) chirality.

Note the formation of a “seam” where the chirality changes abruptly.

which have two halves that twist with opposite chirality,
have been observed experimentally in, e.g., aspirin [6,40] and
poly(trimethylene terephthalate) (PTT) [41] thin films. In our
model, heterochiral banded spherulites are simulated by ener-
getically favoring twisting about the fast-growing crystalline
axis, i.e., W = X, and along the normal growth direction, i.e.,
§ = 7i. We introduce a moderately large twofold-symmetric
mobility anisotropy § = 0.75 to reflect that crystallization
occurs fastest in directions either parallel or antiparallel to
the crystalline %, axis. Here we use A =20 to simulate
compact spherulites, which have tightly packed lamella and
grow in a kinetically limited rather than diffusion-limited
manner. A relative orientational mobility of M, o/ My o = 17.5
is used to allow random orientations in the amorphous phase
to be frozen into the growth front, since radial splaying in
spherulitic growth occurs by noncrystallographic branching
due to growth front nucleation [42]. Here we do not favor
particular out-of-plane orientations and thus set A =0 and
b=0.

As shown in Fig. 2, simulated heterochiral banded
spherulites exhibit both alignment of the fast-growing crys-
talline X, direction with the radial growth direction and
periodic banding due to twisting, which occurs with opposite
chirality on either side of the spherulite. Figures 2(a) and 2(b)
use color to plot the angle of %, in the plane of the substrate,
6 = tan™! (g—ﬁ), yielding images similar to experimentally ob-
tained polarized optical micrographs [5]. Amorphous regions

are shown in gray. As shown in Fig. 2(a), the spherulite
grows by splaying outwards from an initially needle-shaped
seed, forming two halves with a boundary approximately
perpendicular to the X, orientation of the initial seed, which
in this simulation was oriented vertically. Figure 2(b) plots 6
for the final configuration with overlaid arrows indicating the
in-plane direction of %, while Fig. 2(c) shows a color plot of

2 2
— tan_l [Sgﬂ(833)\/ 851185 ]

the out-of-plane orientation angle 8 poe
between the crystalline axis y. and the substrate-perpendicular
axis Z; = (0,0, 1), overlaid again with the same arrows showing
X.. Note that there is no symmetry, so £, and —X. are
not equivalent. Thus, in the upper half of the spherulite,
B decreases along the direction of %., giving right-handed
twisting, while in the lower half of the spherulite, 8 increases
along X, giving left-handed twisting, with an accompanying
“seam” where the chirality changes abruptly. This difference
in chirality is highlighted in Fig. 2(d), which again shows
B, now with saturated colors representing flat-on orientations
and white representing edge-on orientations. Right-handed
twisting is plotted in blue and left-handed twisting is plotted
in red, producing a plot similar to experimentally obtained
circular birefringence micrographs [5,6,40]. Here the chirality
is determined by the sign of the dot product of £, with the
gradient of B: chirality = sgn(gi; % + 812%).

Figures 3(a) and 3(b) show that, as expected, the aver-
age observed twist periodicity in the banded spherulites is
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FIG. 3. (Color online) (a) The average measured band spacing in
simulated heterochiral banded spherulites is shown as a function of
the energetically favored twist period. The dashed line shows what
the band spacing would be if it were exactly equal to the energetically
favored value. Lengths are reported relative to the crystal-amorphous
interface width £ and error bars represent the standard deviation over
measurements in 50° arcs on both sides of the spherulite. (b) The
same data is plotted with the y axis showing the ratio of the measured
to the energetically favored period.

determined by the energetically favored twist period P, which
here is reported relative to the crystal-amorphous interface
width &. The measured banding period is slightly larger than
the energetically favored P because the free energy favors
twisting along the normal growth direction and no twisting
along the tangential direction, but the spherulites are not
always perfectly circular so the axis along which twisting
is favored is not always radially aligned, thus causing less
twisting to occur than what is specified by P. We also observe
that band jaggedness increases slightly as the relative orienta-
tional mobility M, /M, decreases, since random orientations
are more easily frozen into the crystalline phase when the
relative orientational mobility is low. This represents only one
mechanism for banding irregularity, however, since additional
interactions between and inhomogeneities within lamella may
also affect the organization of the bands in a banded spherulite
[3], and increased viscosity has been observed to correlate
both with increased and decreased banding coherence under
different circumstances [16].

B. Curved dendrites

Next, we simulate dendrites with uniformly rotating
branches, which have been observed in, e.g., ultrathin films
of PLLA-PDLA blends [7,8]. In our model, these curved
dendrites arise when twisting of the crystalline orientation
is energetically favored about an axis perpendicular to the
substrate, i.e., W = Z;, and along the normal growth direction
(§ = n). Since ultrathin films typically crystallize in a flat-on
orientation, we energetically favor the flat-on orientation by
setting .. = —0.01 and » = 0.002. A high relative orientational
mobility M, o/ Mg o = 200 is used to reflect that, ignoring the
curving, the dendrites are single crystalline, as the time scale
for orientational ordering is fast relative to the crystallization
rate. Since crystallization is often diffusion limited for these
low film thicknesses and/or nonequimolar polymer blend
ratios, here we set A = 0.5. In the simulations below, we
use a mobility anisotropy of magnitude § = 0.25. Note that
because these curved dendrites remain in a flat-on orientation,
theoretically it is only necessary to track their local 2D
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crystalline orientation, but here we continue to use the full 3D
orientation in order to use the same modeling framework and
to make it easier to extend these simulations to more general
cases, such as when curved edge-on and flat-on crystals form
simultaneously in the same film [7].

Figure 4 shows the morphologies that arise for different k-
fold—symmetric kinetic anisotropies and different orientational
turning rates, which are characterized by the period P over
which the orientation turns by 360°. Lengths are reported
relative to Ip = 2TD, the diffusion length of the noncurved
dendrite for each value of k, where D is the diffusivity of
the u field (equal to 1 in nondimensionalized units) and v
is the measured dendrite tip growth velocity for P = co and
fixed k. Colors represent 6 = tan™! (%), the local in-plane
orientation relative to a fixed substrate axis, and amorphous
regions are shown in white. Due to the anisotropy, the turning
of the crystalline orientation causes the branches to turn with
a radius of curvature of approximately P /4, which is the
distance over which 6 varies by 90°. Side branching occurs
preferentially on the side of parent branches facing away from
the direction in which the branches turn, in agreement with
experimental observations [7,43]. Because the energetically
preferred rotation period is constant, after turning by at most
180°, primary branches stop growing due to collision with
other branches, and side branches take over the radially
outward propagation of the growth envelope. These side
branches grow until they too have turned so that their growth
direction is perpendicular to the radial growth direction and
the next generation of side branches then takes over.

Figure 5 in turn shows, for the case of threefold-symmetric
mobility anisotropy, the morphologies that form within a
fixed crystallization time for different orientational turning
rates with normalized periods P/I/p, where [ again denotes
the measured diffusion length associated with the noncurved
dendrite. The u field is plotted in the amorphous phase with
larger gradients near the interface associated with larger local
crystal growth rates, while the crystalline phase is shown
in black. As the orientational turning period decreases, the
branch radius of curvature also decreases until P /4 becomes
comparable to the width of the branches, at which point the
branch growth direction is no longer able to always locally
align with the rapidly turning orientations in the crystalline
phase, and the crystal takes on a “seaweed”-like shape that
resembles the morphology of diffusion-limited growth in
the absence of any anisotropy [44]. The u field shows the
diffusion-limited nature of the growth, as a region of reduced
driving force, where u is closer to zero, builds up just
ahead of the crystal growth front. As will be discussed next,
observed changes in the growth morphology directly affect the
large-scale crystallization kinetics.

It is well known that needle crystals do not fill space
effectively, while the more compact seaweedlike structures
crystallize at a smaller rate relative to the needle crystals. In
our simulations, the finite turning rate serves as an external
knob which effectively controls the crystallization time after
which simple anisotropic needle crystal growth becomes more
isotropic, and one intuitively expects that this change in the
large-scale morphology of the crystal should be reflected in the
overall growth kinetics. Indeed, not only do the morphologies
vary with the orientational turning period, but the rates at which
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FIG. 4. (Color online) Dendrites with k-fold—symmetric mobility anisotropy curve as they grow with a radius of curvature dictated by the
energetically favored orientational turning period P, which is here reported relative to the diffusion length I, = 2D /v of the straight dendrite
for the respective value of k. Curving promotes the growth of side branches, which take over the propagation of the overall growth envelope
after their parent branches have turned enough to collide with other branches. Colors represent the local in-plane orientation relative to a fixed
substrate axis.
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FIG. 5. (Color online) Simultaneous snapshots of dendrite growth for k = 3 for various energetically favored orientational turning rates
with normalized periods P/[p. When the radius of curvature P /4 becomes comparable to the branch width, the morphology becomes “seaweed”
shaped as the growth direction of the branches can no longer always locally match the crystalline orientation. The crystalline phase is shown in
black, while in the amorphous phase the diffusing u field is shown with red (dark) indicating higher driving force for crystallization and yellow
(light) indicating lower driving force for crystallization.
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FIG. 6. (Color online) (a) The maximum radius of a dendrite, defined as the distance of the farthest crystallized point from the center, grows
more slowly for greater twisting rates. (b) The total crystallized area increases with time at a rate that depends on the orientational turning
period. (c) At each time, the crystallized area achieves a maximum at a particular turning period. As time progresses, this maximum occurs
at larger periods. Plotted points and error bars correspond to the average, maximum, and minimum, respectively, over three initial conditions.
(d) The orientational turning period at which the total crystallized area is maximized scales approximately as P = % (red dashed line),
which represents the turning period for which a branch would have turned by 180° at time ¢.

the position of the outermost crystallized point and the total
crystallized area grow over time also depend on the turning
rate, as shown in Figs. 6(a) and 6(b). Here, times are reported

relative to the characteristic diffusion time tp = % = 217"
extracted from the simulations of the noncurved dendrite. Data
for a threefold-symmetric mobility anisotropy are shown, but
similar behavior was also observed for k = 4 and k = 6. The
position of the outermost crystallized point grows linearly with
time for the straight dendrite and in a slower oscillatory manner
for intermediate turning periods, since branches approximately

trace out circular arcs whose chord lengths vary as g sin (ZF“t)
for t < %, after which a new generation of side branches
takes over. For orientational turning periods small enough that
the radius of curvature is comparable to the branch width,
the morphology becomes seaweed shaped, so that there are
no longer distinct generations of turning branches and thus
no longer any discernible oscillations in the tip position.
Figure 6(b) shows that the total crystallized area also increases
with time, but at a rate that varies nonmonotonically with
P/lp. Figure 6(c) plots the same data as Fig. 6(b) but as a
function of inverse orientational turning period for particular
times, showing that at each time the total crystallized area is
maximized at a finite turning period. As time progresses, the
period at which this maximum occurs shifts so that at longer
crystallization times lower rates of turning lead to the greatest
crystallized area.

This variation in areal crystallization rate arises because the
turning of the dendrite branches initially acts as an efficient
method for guiding branches towards uncrystallized regions

with higher driving force for crystallization, leading to a faster
areal growth rate than straight branch growth for a fixed tip
growth rate. However, after the primary branches complete
a turn of approximately 180°, the overall growth envelope
becomes effectively isotropic so that diffusion limitations
build up a region of low driving force for crystallization ahead
of the growth front, slowing further growth. In the limit of a
very high turning rate that results in a seaweed shape, branch
tips become sufficiently rounded so that diffusion limitations
slow growth even further. The orientational turning period for
which the crystallized area is maximized at each time is shown
in Fig. 6(d). Its scaling behavior can be approximated by

P = % which represents the turning period corresponding

to branches that have turned by 180° at time f, assuming
a constant local tip velocity v equal to that of the straight
dendrite primary branch tip.

These results suggest that if the nucleation rate is also
taken into consideration, the orientational turning rate can be
optimized to achieve the most rapid areal crystallization rate
for fixed values of all other parameters. Experimentally, the
radius of curvature of dendrite branches in PLLA-PDLA blend
thin films has been tuned by varying the blend ratio, film thick-
ness, or crystallization temperature, although varying these
parameters also simultaneously affected other crystallization
properties [7]. It has also been suggested theoretically that
curved dendrites can be engineered in thin films through the
placement of uniformly rotating orientational pinning centers
[45]. Our results demonstrate that varying the orientational
turning rate of crystals growing in a diffusion-limited condition
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W= Zs

FIG. 7. (Color online) Four different types of twisting or curving
morphologies are simulated for different axes about which (&) and
along which (§) twisting is energetically favored: (a) heterochiral

banded spherulites, (b) homochiral banded spherulites, (c) “s”-shaped
crystals, and (d) “c”-shaped crystals.

affects not only the crystallization morphology but also the
kinetics.

C. Other morphologies

Finally, Fig. 7 summarizes four types of twisting or curving
morphologies our model can simulate. Banded spherulites,
plotted using the same color scheme as Fig. 2(d), may be
either heterochiral, as shown in Fig. 7(a), or homochiral,
as shown in Fig. 7(b). Heterochiral banded spherulites were
discussed above in Sec. III A. Homochiral banded spherulites,
in which all lamella twist with the same handedness,
have been observed experimentally in microbial poly(R-3-
hydroxybutyrate) copolymer films [14] and mannitol crystal-
lized in the presence of poly(vinylpyrrolidone) or sorbitol [46].
In our model, homochiral banded spherulites can be simulated
by favoring twisting about the fast-growing crystalline axis,
ie., W = X, and along the same axis, i.e., § = X_.

Another class of curved crystallization morphologies arises
when orientational twisting occurs instead about the axis
perpendicular to the plane of the substrate with a twofold-
symmetric anisotropy of magnitude § = 0.75 and under
single-crystal-forming conditions where M, /My o = 200:
“s”-shaped or “c”-shaped crystals, as shown in Figs. 7(c)
and 7(d), respectively. The “s”-shaped crystal is analogous to
the curved dendrites discussed above, but withk = 2, A = 20,
and § = 0.75. The “c”-shaped crystal in Fig. 7(d) forms when
twist occurs about the axis perpendicular to the substrate,
ie.,, W = Z,, and the direction along which twist occurs is
given by the fast-growing crystalline direction, i.e., § = X..

[l

Experimentally, “s”-shaped crystals have been observed in

PHYSICAL REVIEW E 92, 042404 (2015)

ultrathin films of poly(e-caprolactone)—poly(vinyl chloride)
blends [47], while morphologies similar to the “c”-shaped
crystal, albeit with spatially varying curvature and multiple
branches, have been observed in ultrathin films of linear
low-density polyethylene [48].

An even wider array of morphologies can, in theory, be
engineered by applying time-varying or spatially varying
treatments so that the twist period or handedness varies in
different regions of the film. For example, in our simulations,
varying P over time has an effect similar to experimentally
ramping the temperature over time to crystallize banded
spherulites with variably spaced bands and oppositely twisting
lamella, as has been done in PTT films [41]. Although it
has not yet been achieved experimentally, spatially patterning
a film with regions that favor different twisting rates by
spatially varying the thickness, surface energy, composition,
or temperature of the film could also potentially provide a
pathway for engineering more complex twisting or curving
crystallization patterns.

IV. CONCLUSION

In this paper, we have presented a parametric study of
twisted crystal growth in organic thin films using a phase-field
model that energetically favors twisting about and along
particular 3D axes, allowing us to reproduce morphologies
such as banded spherulites and curved dendrites. Heterochiral
banded spherulites were simulated by favoring twisting of
the crystalline orientation about the fast-growing crystalline
direction and along the local growth direction. In curved
dendrites, we found that the turning of the dendrite branches
affects both the crystallization morphology and kinetics. The
total crystallized area is maximized for a finite turning rate
because turning promotes side branch growth into as-yet
uncrystallized regions but also ultimately leads to an isotropic
growth envelope that eventually slows growth due to diffusion
limitations. Interestingly, both heterochiral banded spherulites
and curved dendrites require that twisting occurs along the
growth direction, implying that for these morphologies, the
local growth conditions at the crystal-amorphous interface
play an important role in how crystallization proceeds, and
the structure of the crystalline phase does not by itself lead to
the observed twisting patterns.

Although our model can capture a wide variety of mor-
phologies, organic thin film crystallization is a complex
process, and there are still many experimentally observed crys-
tallization patterns that cannot be reproduced by our simple
model [48,49]. For example, poly(propylene adipate) films
crystallize with lamella winding helically about a cylinder,
requiring additional parameters to fully describe the lamellar
shape and orientation [50]. Films may also exhibit irregu-
larities in surface height, such as when edge-on lamella rise
above the film thickness of the melt [51], but our simulations
have all been performed in two dimensions without explicitly
accounting for thickness variations or surface effects. Here
we have also not accounted for crystalline symmetries other
than through the introduction of a k-fold—symmetric mobility
anisotropy, nor does our model explicitly account for the width
and thickness of lamella in banded spherulites. Nevertheless,
our simulations have successfully reproduced a variety of
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twisting and curving crystallization patterns, and we hope that
our work proves useful in the continued study of the complex
crystallization behavior of organic thin films.
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APPENDIX: FINITE VOLUME FORMULAS

Spatial derivatives of the quaternion field are implemented with a finite volume approach that uses Simpson’s rule for
integration. Below, ¢ refers to one of the four components of the quaternion vector ¢, and r refers to the corresponding

component of the twist rate 7.
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Values at half grid points are calculated by averaging the closest on-grid neighboring points.

[1] Y.-X. Liu and E.-Q. Chen, Coord. Chem. Rev. 254, 1011 (2010).

[2] A. M. Hiszpanski and Y.-L. Loo, Energy Environ. Sci. 7, 592
(2014).

[3] A. G. Shtukenberg, Y. O. Punin, A. Gujral, and B. Kahr, Angew.
Chemie Intl. Ed. 53, 672 (2014).

[4] B. Lotz and S. Z. D. Cheng, Polymer 46, 577 (2005).

[5] E. Gunn, R. Sours, J. B. Benedict, W. Kaminsky, and B. Kahr,
J. Am. Chem. Soc. 128, 14234 (2000).

[6] X. Cui, A. G. Shtukenberg, J. Freudenthal, S. Nichols, and
B. Kahr, J. Am. Chem. Soc. 136, 5481 (2014).

[7]1 X. Wang and R. E. Prudhomme, Macromolecules 47, 668
(2014).

[8] D. Maillard and R. E. Prudhomme, Macromolecules 43, 4006
(2010).

[9] H. D. Keith and F. J. Padden Jr., Polymer 25, 28 (1984).

[10] H. D. Keith and F. J. Padden Jr., Macromolecules 29, 7776
(1996).

[11] J. M. Schultz, Polymer 44, 433 (2003).

[12] J. M. Schultz, Macromolecules 45, 6299 (2012).

[13] Y. O. Punin, J. Struct. Chem. 35, 616 (1994).

[14] H.-M. Ye, J.-S. Wang, S. Tang, J. Xu, X.-Q. Feng, B.-H.
Guo, X.-M. Xie, J.-J. Zhou, L. Li, Q. Wu, and G.-Q. Chen,
Macromolecules 43, 5762 (2010).

[15] Y. Hatwalne and M. Muthukumar, Phys. Rev. Lett. 105, 107801
(2010).

[16] B. Sadlik, Master’s thesis, Department of Physics, Simon Fraser
University, 2004.

[17] L. Grénédsy, L. Ratkai, A. Széllds, B. Korbuly, G. 1. Téth,
L. Kornyei, and T. Pusztai, Metall. Mater. Trans. A 45, 1694
(2014).

[18] T. Kyu, H.-W. Chiu, A. J. Guenthner, Y. Okabe, H. Saito, and
T. Inoue, Phys. Rev. Lett. 83, 2749 (1999).

[19] Wang Xiao-Dong, Ouyang Jie, Su Jin, and Zhou Wen, Chin.
Phys. B 23, 126103 (2014).

[20] R. Mehta, W. Keawwattana, A. L. Guenthner, and T. Kyu, Phys.
Rev. E 69, 061802 (2004).

[21] R. Kobayashi, Physica D 63, 410 (1993).

[22] T. Pusztai, G. Bortel, and L. Granasy, Europhys. Lett. 71, 131
(2005).

[23] T. Pusztai, G. Tegze, G. 1. Téth, L. Kornyei, G. Bansel, Z.
Fan, and L. Granasy, J. Phys.: Condens. Matter 20, 404205
(2008).

[24] J.-L. Fattebert, M. E. Wickett, and P. E. A. Turchi, Acta Mater.
62, 89 (2014).

[25] M. R. Dorr, J.-L. Fattebert, M. E. Wickett, J. F. Belak, and P. E.
A. Turchi, J. Comput. Phys. 229, 626 (2010).

[26] R. Oda,I. Huc, M. Schmutz, S. J. Candau, and F. C. MacKintosh,
Nature (London) 399, 566 (1999).

[27] M. Plapp, Philos. Mag. 91, 25 (2011).

[28] A. M. Hiszpanski, S. S. Lee, H. Wang, A. R. Woll, C. Nuckolls,
and Y.-L. Loo, ACS Nano 7, 294 (2013).

[29] A. Fang and M. Haataja, Phys. Rev. E 89, 022407 (2014).

[30] A. Fang, A. K. Hailey, A. Grosskopf, J. E. Anthony, Y.-L. Loo,
and M. Haataja, APL Mater. 3, 036107 (2015).

[31] K. Aguenaou, Ph.D. thesis, Department of Physics, McGill
University, 1997.

[32] In the case of solidification of a pure material, u = (T —
Tu)/(Tw — Tw), where T, denotes the melting temperature, T,
denotes the initial temperature, and A = (Ty — To)/(L/cy),
with L and cy denoting the latent heat and heat capacity at
constant volume, respectively. Now, setting u = —1 everywhere
and employing A < 1 implies that excess heat accumulates
ahead of the crystal-melt interface, and a fraction A of the
system crystallizes and coexists with a melt at dimensionless
temperature # = (0 at the end of the solidification process.
On the other hand, setting A > 1 implies that the whole
system crystallizes and reaches a dimensionless temperature
u = —1+ 1/A asymptotically.

042404-11


http://dx.doi.org/10.1016/j.ccr.2010.02.017
http://dx.doi.org/10.1016/j.ccr.2010.02.017
http://dx.doi.org/10.1016/j.ccr.2010.02.017
http://dx.doi.org/10.1016/j.ccr.2010.02.017
http://dx.doi.org/10.1039/C3EE42615G
http://dx.doi.org/10.1039/C3EE42615G
http://dx.doi.org/10.1039/C3EE42615G
http://dx.doi.org/10.1039/C3EE42615G
http://dx.doi.org/10.1002/anie.201301223
http://dx.doi.org/10.1002/anie.201301223
http://dx.doi.org/10.1002/anie.201301223
http://dx.doi.org/10.1002/anie.201301223
http://dx.doi.org/10.1016/j.polymer.2004.07.042
http://dx.doi.org/10.1016/j.polymer.2004.07.042
http://dx.doi.org/10.1016/j.polymer.2004.07.042
http://dx.doi.org/10.1016/j.polymer.2004.07.042
http://dx.doi.org/10.1021/ja065139+
http://dx.doi.org/10.1021/ja065139+
http://dx.doi.org/10.1021/ja065139+
http://dx.doi.org/10.1021/ja065139+
http://dx.doi.org/10.1021/ja5013382
http://dx.doi.org/10.1021/ja5013382
http://dx.doi.org/10.1021/ja5013382
http://dx.doi.org/10.1021/ja5013382
http://dx.doi.org/10.1021/ma4012208
http://dx.doi.org/10.1021/ma4012208
http://dx.doi.org/10.1021/ma4012208
http://dx.doi.org/10.1021/ma4012208
http://dx.doi.org/10.1021/ma902625p
http://dx.doi.org/10.1021/ma902625p
http://dx.doi.org/10.1021/ma902625p
http://dx.doi.org/10.1021/ma902625p
http://dx.doi.org/10.1016/0032-3861(84)90264-7
http://dx.doi.org/10.1016/0032-3861(84)90264-7
http://dx.doi.org/10.1016/0032-3861(84)90264-7
http://dx.doi.org/10.1016/0032-3861(84)90264-7
http://dx.doi.org/10.1021/ma960634j
http://dx.doi.org/10.1021/ma960634j
http://dx.doi.org/10.1021/ma960634j
http://dx.doi.org/10.1021/ma960634j
http://dx.doi.org/10.1016/S0032-3861(02)00724-3
http://dx.doi.org/10.1016/S0032-3861(02)00724-3
http://dx.doi.org/10.1016/S0032-3861(02)00724-3
http://dx.doi.org/10.1016/S0032-3861(02)00724-3
http://dx.doi.org/10.1021/ma202476t
http://dx.doi.org/10.1021/ma202476t
http://dx.doi.org/10.1021/ma202476t
http://dx.doi.org/10.1021/ma202476t
http://dx.doi.org/10.1007/BF02578330
http://dx.doi.org/10.1007/BF02578330
http://dx.doi.org/10.1007/BF02578330
http://dx.doi.org/10.1007/BF02578330
http://dx.doi.org/10.1021/ma100920u
http://dx.doi.org/10.1021/ma100920u
http://dx.doi.org/10.1021/ma100920u
http://dx.doi.org/10.1021/ma100920u
http://dx.doi.org/10.1103/PhysRevLett.105.107801
http://dx.doi.org/10.1103/PhysRevLett.105.107801
http://dx.doi.org/10.1103/PhysRevLett.105.107801
http://dx.doi.org/10.1103/PhysRevLett.105.107801
http://dx.doi.org/10.1007/s11661-013-1988-0
http://dx.doi.org/10.1007/s11661-013-1988-0
http://dx.doi.org/10.1007/s11661-013-1988-0
http://dx.doi.org/10.1007/s11661-013-1988-0
http://dx.doi.org/10.1103/PhysRevLett.83.2749
http://dx.doi.org/10.1103/PhysRevLett.83.2749
http://dx.doi.org/10.1103/PhysRevLett.83.2749
http://dx.doi.org/10.1103/PhysRevLett.83.2749
http://dx.doi.org/10.1088/1674-1056/23/12/126103
http://dx.doi.org/10.1088/1674-1056/23/12/126103
http://dx.doi.org/10.1088/1674-1056/23/12/126103
http://dx.doi.org/10.1088/1674-1056/23/12/126103
http://dx.doi.org/10.1103/PhysRevE.69.061802
http://dx.doi.org/10.1103/PhysRevE.69.061802
http://dx.doi.org/10.1103/PhysRevE.69.061802
http://dx.doi.org/10.1103/PhysRevE.69.061802
http://dx.doi.org/10.1016/0167-2789(93)90120-P
http://dx.doi.org/10.1016/0167-2789(93)90120-P
http://dx.doi.org/10.1016/0167-2789(93)90120-P
http://dx.doi.org/10.1016/0167-2789(93)90120-P
http://dx.doi.org/10.1209/epl/i2005-10081-7
http://dx.doi.org/10.1209/epl/i2005-10081-7
http://dx.doi.org/10.1209/epl/i2005-10081-7
http://dx.doi.org/10.1209/epl/i2005-10081-7
http://dx.doi.org/10.1088/0953-8984/20/40/404205
http://dx.doi.org/10.1088/0953-8984/20/40/404205
http://dx.doi.org/10.1088/0953-8984/20/40/404205
http://dx.doi.org/10.1088/0953-8984/20/40/404205
http://dx.doi.org/10.1016/j.actamat.2013.09.036
http://dx.doi.org/10.1016/j.actamat.2013.09.036
http://dx.doi.org/10.1016/j.actamat.2013.09.036
http://dx.doi.org/10.1016/j.actamat.2013.09.036
http://dx.doi.org/10.1016/j.jcp.2009.09.041
http://dx.doi.org/10.1016/j.jcp.2009.09.041
http://dx.doi.org/10.1016/j.jcp.2009.09.041
http://dx.doi.org/10.1016/j.jcp.2009.09.041
http://dx.doi.org/10.1038/21154
http://dx.doi.org/10.1038/21154
http://dx.doi.org/10.1038/21154
http://dx.doi.org/10.1038/21154
http://dx.doi.org/10.1080/14786435.2010.486757
http://dx.doi.org/10.1080/14786435.2010.486757
http://dx.doi.org/10.1080/14786435.2010.486757
http://dx.doi.org/10.1080/14786435.2010.486757
http://dx.doi.org/10.1021/nn304003u
http://dx.doi.org/10.1021/nn304003u
http://dx.doi.org/10.1021/nn304003u
http://dx.doi.org/10.1021/nn304003u
http://dx.doi.org/10.1103/PhysRevE.89.022407
http://dx.doi.org/10.1103/PhysRevE.89.022407
http://dx.doi.org/10.1103/PhysRevE.89.022407
http://dx.doi.org/10.1103/PhysRevE.89.022407
http://dx.doi.org/10.1063/1.4915537
http://dx.doi.org/10.1063/1.4915537
http://dx.doi.org/10.1063/1.4915537
http://dx.doi.org/10.1063/1.4915537

ALTA FANG AND MIKKO HAATAJA

[33] S. S. Lee, S. B. Tang, D.-M. Smilgies, A. R. Woll, M. A. Loth,
J. M. Mativetsky, J. E. Anthony, and Y.-L. Loo, Adv. Mater. 24,
2692 (2012).

[34] FE.J. Padden Jr. and H. D. Keith, J. Appl. Phys. 30, 1479 (1959).

[35] S. M. LaValle, Planning Algorithms (Cambridge University
Press, Cambridge, 2006), pp. 198-199.

[36] L. Vicci, http://www.cs.unc.edu/techreports/01-014.pdf

[37] J. A. Warren, R. Kobayashi, A. E. Lobkovsky, and W. C. Carter,
Acta Mater. 51, 6035 (2003).

[38] A. Shtukenberg, E. Gunn, M. Gazzano, J. Freudenthal, E. Camp,
R. Sours, E. Rosseeva, and B. Kahr, ChemPhysChem 12, 1558
(2011).

[39] A. G. Shtukenberg, Y. O. Punin, E. Gunn, and B. Kahr, Chem.
Rev. 112, 1805 (2011).

[40] X. Cui, A. L. Rohl, A. Shtukenberg, and B. Kahr, J. Am. Chem.
Soc. 135, 3395 (2013).

[41] M. Rosenthal, M. Burghammer, G. Bar, E. T. Samulski, and D.
A. Ivanov, Macromolecules 47, 8295 (2014).

[42] L. Granasy, T. Pusztai, G. Tegze, J. A. Warren, and J. F. Douglas,
Phys. Rev. E 72, 011605 (2005).

PHYSICAL REVIEW E 92, 042404 (2015)

[43] F. Zhang, J. Liu, H. Huang, B. Du, and T. He, Europhys. J. E 8,
289 (2002).

[44] L. Gréanasy, T. Pusztai, T. Borzsonyi, J. A. Warren, and J. F.
Douglas, Nat. Mater. 3, 645 (2004).

[45] L. Granasy, T. Pusztai, J. A. Warren, J. F. Douglas, T. Borzsonyi,
and V. Ferreiro, Nat. Mater. 2, 92 (2003).

[46] A. G. Shtukenberg, X. Cui, J. Freudenthal, E. Gunn,
E. Camp, and B. Kahr, J. Am. Chem. Soc. 134, 6354
(2012).

[47] A. Mamun, V. H. Mareau, J. Chen, and R. E. Prud’homme,
Polymer 55, 2179 (2014).

[48] K. Jeon and R. Krishnamoorti, Macromolecules 41, 7131
(2008).

[49] E. Gunn, L. Wong, C. W. Branham, B. Marquardt, and B. Kahr,
CrystEngComm 13, 1123 (2011).

[50] M. Rosenthal, J. J. Hernandez, Y. I. Odarchenko, M. Soccio, N.
Lotti, E. Di Cola, M. Burghammer, and D. A. Ivanov, Macromol.
Rapid Commun. 34, 1815 (2013).

[51] D. Maillard and R. E. Prud’homme, Macromolecules 41, 1705
(2008).

042404-12


http://dx.doi.org/10.1002/adma.201104619
http://dx.doi.org/10.1002/adma.201104619
http://dx.doi.org/10.1002/adma.201104619
http://dx.doi.org/10.1002/adma.201104619
http://dx.doi.org/10.1063/1.1734985
http://dx.doi.org/10.1063/1.1734985
http://dx.doi.org/10.1063/1.1734985
http://dx.doi.org/10.1063/1.1734985
http://www.cs.unc.edu/techreports/01-014.pdf
http://dx.doi.org/10.1016/S1359-6454(03)00388-4
http://dx.doi.org/10.1016/S1359-6454(03)00388-4
http://dx.doi.org/10.1016/S1359-6454(03)00388-4
http://dx.doi.org/10.1016/S1359-6454(03)00388-4
http://dx.doi.org/10.1002/cphc.201000963
http://dx.doi.org/10.1002/cphc.201000963
http://dx.doi.org/10.1002/cphc.201000963
http://dx.doi.org/10.1002/cphc.201000963
http://dx.doi.org/10.1021/cr200297f
http://dx.doi.org/10.1021/cr200297f
http://dx.doi.org/10.1021/cr200297f
http://dx.doi.org/10.1021/cr200297f
http://dx.doi.org/10.1021/ja400833r
http://dx.doi.org/10.1021/ja400833r
http://dx.doi.org/10.1021/ja400833r
http://dx.doi.org/10.1021/ja400833r
http://dx.doi.org/10.1021/ma501733n
http://dx.doi.org/10.1021/ma501733n
http://dx.doi.org/10.1021/ma501733n
http://dx.doi.org/10.1021/ma501733n
http://dx.doi.org/10.1103/PhysRevE.72.011605
http://dx.doi.org/10.1103/PhysRevE.72.011605
http://dx.doi.org/10.1103/PhysRevE.72.011605
http://dx.doi.org/10.1103/PhysRevE.72.011605
http://dx.doi.org/10.1140/epje/i2002-10015-3
http://dx.doi.org/10.1140/epje/i2002-10015-3
http://dx.doi.org/10.1140/epje/i2002-10015-3
http://dx.doi.org/10.1140/epje/i2002-10015-3
http://dx.doi.org/10.1038/nmat1190
http://dx.doi.org/10.1038/nmat1190
http://dx.doi.org/10.1038/nmat1190
http://dx.doi.org/10.1038/nmat1190
http://dx.doi.org/10.1038/nmat815
http://dx.doi.org/10.1038/nmat815
http://dx.doi.org/10.1038/nmat815
http://dx.doi.org/10.1038/nmat815
http://dx.doi.org/10.1021/ja300257m
http://dx.doi.org/10.1021/ja300257m
http://dx.doi.org/10.1021/ja300257m
http://dx.doi.org/10.1021/ja300257m
http://dx.doi.org/10.1016/j.polymer.2014.03.010
http://dx.doi.org/10.1016/j.polymer.2014.03.010
http://dx.doi.org/10.1016/j.polymer.2014.03.010
http://dx.doi.org/10.1016/j.polymer.2014.03.010
http://dx.doi.org/10.1021/ma800652p
http://dx.doi.org/10.1021/ma800652p
http://dx.doi.org/10.1021/ma800652p
http://dx.doi.org/10.1021/ma800652p
http://dx.doi.org/10.1039/C0CE00359J
http://dx.doi.org/10.1039/C0CE00359J
http://dx.doi.org/10.1039/C0CE00359J
http://dx.doi.org/10.1039/C0CE00359J
http://dx.doi.org/10.1002/marc.201300713
http://dx.doi.org/10.1002/marc.201300713
http://dx.doi.org/10.1002/marc.201300713
http://dx.doi.org/10.1002/marc.201300713
http://dx.doi.org/10.1021/ma071306u
http://dx.doi.org/10.1021/ma071306u
http://dx.doi.org/10.1021/ma071306u
http://dx.doi.org/10.1021/ma071306u



