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Controlling the morphology of materials grown via electrodeposition into porous templates remains a challenge, since the filling
of the template often proceeds in a non-uniform manner, which is undesirable for applications such as nanowire fabrication. Here,
we first develop a continuum phase-field approach for modeling electrodeposition into a porous template. We simulate growth
within a single straight pore in order to study the fraction of the pore width filled by the deposit under various conditions, and then
simulate growth within and overflowing a template composed of several straight pores. We reproduce experimentally observed cap
morphologies and corresponding current transients, and find that when the template material is permeable to ionic diffusion, growth
becomes more non-uniform. We also perform simulations of electrodeposition in pores with cross-sectional areas that vary over the
height of the template, and show that the deposit homogeneity is strongly affected by variations in pore geometry. Finally, we carry
out a statistical analysis of length distributions of electrodeposited nanowires extracted from experimental images. Such an analysis
enables us to quantify, e.g., the pore-to-pore variations in nucleation times or growth rates required to yield the observed spread in
nanowire lengths.
© 2017 The Electrochemical Society. [DOI: 10.1149/2.1331713jes] All rights reserved.
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Introduction

Using electrodeposition to deposit materials into the long and
narrow pores of porous templates is an efficient technique for fab-
ricating nanowires,1 which have applications in a variety of de-
vices such as sensors,2 high-density magnetic data storage devices,3

thermoelectrics,4 and optoelectronic systems.5 Common templates for
nanowire deposition include anodized aluminum oxide (AAO) and
ion-track-etched membranes,6,7 which feature a dense array of pores
that are up to 100 microns long and tens to hundreds of nanome-
ters in diameter.7,8 A challenge faced during electrodeposition into
these templates is that often, a small fraction of nanowires reach the
end of the template before the others and then grow radially out-
wards, blocking growth in neighboring pores and leading to a non-
uniform nanowire array with many short nanowires that do not span
the template.9,10 Maximizing the fraction of nanowires that span the
template is desirable for many applications, which require electrical
contact between the top and bottom of each nanowire. Improving the
uniformity of electrodeposition in a porous membrane is also relevant
for battery applications, where electrodeposition conditions are typi-
cally different from those modeled in this work but which nonetheless
face a similar challenge of preventing the protruding growth of elec-
trodeposits, since metal “dendrite” growth across the porous battery
separator during charging can short-circuit the cell, leading to battery
failure.11

Differences in the lengths of electrodeposited nanowires have
been attributed to differences in nucleation times,4,12 non-uniform
pore lengths,12,13 cracks in the template,14 pore branching,8 and
other pore irregularities,12,15 but theoretical studies of template-
assisted electrodeposition have been limited to simple model ge-
ometries and often use different models to describe different stages
of the electrodeposition process.8,12,13,16–19 A one-dimensional (1D)
analytical solution for the growth trajectory of a nanowire in a
single pore has been obtained in the limit of entirely diffusion-
limited growth,12 but it neglects the effects of electrode ki-
netics or the interfacial energy of the electrolyte-electrodeposit
interface. Phase-field models for electrodeposition that do account for
these phenomena have been developed,20–23 and a phase-field model
has been used to study metal dendrite growth through a porous battery
separator.24 However, phase-field simulations of template-assisted
nanowire electrodeposition have not until now been performed.

In this paper, we develop a phase-field model for electrodeposition
into a porous template. We perform phase-field simulations of growth
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first in a single straight pore, then in a template composed of several
straight pores, and finally in branched pores. We find that permeability
of the pore walls to ionic diffusion leads to more non-uniform growth.
Using 1D simulations of a corresponding sharp-interface model for
electrodeposition, we show that the growth rate can be significantly
affected by how the cross-sectional area of the pore varies with height
in the template. In addition, we develop a framework for statistically
analyzing nanowire length distributions, which may be extracted from
experimental scanning electron microscope (SEM) images. We ana-
lyze whether length distributions are bimodal or unimodal, and we
determine the pore-to-pore variations in nucleation times or growth
rates that yield particular nanowire length distributions. We empha-
size that our modeling approaches are not unique to electrodeposition
in porous templates, but can be applied more broadly in systems with
diffusion- or reaction-kinetics-limited growth in confined geometries.

Theoretical Approach

Our starting point is a model for potentiostatic electrodeposition
under mixed diffusion and charge transfer control. We assume that
there is an excess of supporting electrolyte so that we can neglect
ionic migration,25 and we also neglect convection within the porous
template.26 Specifically, the transport equations and associated bound-
ary conditions along the moving deposit-electrolyte interface used in
this work are as follows. In the electrolyte, the concentration of the
depositing species, c, is obtained from

∂c

∂t
= �∇ · (D �∇c), [1]

where D denotes the diffusivity, while at the electrodeposit-electrolyte
interface,

i = i0

(
exp

[
α1

(
nFφel

RT
+ γκVm

RT

)]

− c

ceq
exp

[
−α2

(
nFφel

RT
+ γκVm

RT

)])
; [2]

i = −nFD �∇c · n̂; [3]

vn = −i

csnF . [4]

That is, charge transfer kinetics at the electrode interface in Eq. 2
are modeled by the Butler-Volmer equation,26–28 where i0 denotes the
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exchange current density, α1 and α2 denote the charge transfer coeffi-
cients, ceq denotes the equilibrium concentration of the depositing ion,
Vm denotes the molar volume of the deposited material, κ denotes the
interface curvature, γ denotes the electrolyte-electrodeposit interfacial
energy, and n denotes the charge number of the depositing ion. The
normal interfacial velocity vn in turn is determined by the current den-
sity i and the effective molar volume of the deposit c−1

s via Eqs. 3 and
4. Here we have assumed that electroneutrality holds throughout the
electrolyte. We also confine our model to currents below the limiting
current and ignore surface conduction effects or electroosmotic flow,
which may become significant when the current exceeds the limiting
current.29

Now, along the template walls whose material is impermeable to
ionic diffusion,

�∇c · n̂ = 0 [5]

where n̂ is the unit vector normal to the respective interface. In tem-
plate materials with finite exchange of ions between adjacent pores
(due to, e.g., the presence of small cracks in the template), on the other
hand, we have

∂c

∂t
= �∇ · (Dwall �∇c), [6]

where Dwall denotes an effective diffusivity describing transport
through the wall.

We assume that the electric potential is φel throughout the con-
ductive deposit and 0 in the electrolyte, since the electrolyte is well-
supported (and hence we may neglect the Ohmic drop). Thus, a nega-
tive value of the applied potential φel leads to electrodeposition, while
a positive value of φel leads to dissolution. Furthermore, in order to
model phenomena such as stirring of the electrolyte or the presence
of side reactions that locally reduce the reaction rate, we allow both i0

and D to vary in space such that i0(�r ) = ĩ0 fi (�r ) and D(�r) = D̃ fD(�r ),
where fi (�r ) and fD(�r ) are prescribed based on the specific condi-
tions and geometry of the system. In addition, we model a deposit
with isotropic properties, although in principle anisotropic interfacial
energy and kinetics can also be included.

Next, in order to efficiently solve the above moving boundary
problem, we formulate a corresponding phase-field model that is based
on existing phase-field models for electrodeposition.22,30 To this end,
we define an order parameter field ξ(�r , t) such that ξ = 1 in the solid
deposit phase and ξ = 0 in the electrolyte or template material. We
also define a static order parameter ψ(�r ) that describes the template
geometry, where ψ = 1 in the electrolyte or deposit and ψ = 0 in
the template material. We define non-dimensional variables c̄ = c

ceq
,

ī = i
ĩ0

, t̄ = t ĩ0
nFLceq

, x̄ = x
L , D̄ = DnFceq

ĩ0 L
, φ̄el = nFφel

RT , c̄s = cs
ceq

, and

γ̄ = γVm
RT L , where L is the height of the porous template. Finally, the

surface energy γ can be expressed in terms of phase-field parameters

ε and W that control the width of the diffuse interface as γ =
√

ε2W
18 .

Thus the non-dimensionalized phase-field equations are (bars have
been omitted below for clarity):

∂ξ

∂t
= ψ fi (�r )

1

cs

√
W

18ε2
([α1 exp(α1φel ) + α2c exp(−α2φel )]

× [ε2∇2ξ − Wg′(ξ)] − p′(ξ)[exp(α1φel ) − c exp(−α2φel )]);

[7]

∂c

∂t
= �∇ ·

(
D(�r )

[
ψ + (1 − ψ)

Dwall

D

]
(1 − ξ) �∇c

)
− p′(ξ)cs

∂ξ

∂t
,

[8]

where g(ξ) = ξ2(1 − ξ)2 and p(ξ) = ξ3(6ξ2 − 15ξ + 10). Following
Ref. 22, we have Taylor expanded the exponentials in the Butler-
Volmer equation in Eq. 2 assuming γκVm

RT � 1 in order to maintain
computational stability.

The phase-field equations above are solved numerically using finite
differences on a regular grid in either two or three spatial dimensions.
Explicit time-stepping is used for Eq. 7, while implicit Euler time
stepping is used for Eq. 8. We employ periodic boundary conditions in
the lateral direction, c̄ = 1 at the upper boundary, and zero-derivative
boundary conditions at the lower boundary. We use representative
non-dimensional parameters corresponding approximately to copper
electrodeposition from a 0.5 M electrolyte solution into a 60-μm-
thick AAO template: c̄s = 280, D̄ = 10, n = 2, W̄ = 5, ε̄2 =
1.75 × 10−5, Dwall

D = 0 unless stated otherwise, and we assume α1 =
α2 = 0.5. At the initial time, the deposit in each pore is nucleated with
a hemispherical seed at the lower boundary and c̄ = 1 throughout the
electrolyte.

Simulation Results

Three-dimensional phase-field simulations.—Figure 1a shows
representative configurations from a three-dimensional (3D) phase-
field simulation of electrodeposition into a template with a regular
array of cylindrical pores. Here we set the growth rate to be greater
in the central pore than in the other pores and model stirring of the
electrolyte bath as described in more detail below. We use φ̄el = −10
to model moderately diffusion-limited conditions. When the fastest-
growing central nanowire reaches the end of the template, it forms a
cap, similar to those observed experimentally.12,31 We can also sim-
ulate electrodeposition in just one pore, as shown in Fig. 1b, and we
observe that the growth of the nanowire accelerates over time, as ex-
pected when growth is subject to diffusion limitations. Next, in order
to perform quantitative studies on larger computational domains, we
focus on 2D simulations of growth within a single pore as well as in a
template with many pores. We have found that 2D simulations exhibit
the same qualitative behavior as 3D simulations and thus believe that
results from our 2D simulations are also applicable to 3D geometries.

Fraction of pore width filled.—Motivated by experimental ob-
servations that electrodeposited nanowires can have diameters less
than those of the pores in which they are deposited,32,33 we use our
phase-field model to perform simulations of electrodeposition in a
single straight pore under various deposition conditions and observe
the fraction of the pore width that is filled. Our simulation setup is
illustrated in the schematic in Fig. 2a. We simulate pores of aspect
ratio L

w
= 20, where w is the width of the pore, which provides com-

putational expedience while satisfactorily approximating the limit of
L
w

� 1. Although the system is never exactly in steady state, we ob-
serve that the width of the deposit wd does not vary significantly over
the length of a fully grown nanowire, so we report a single value for
the fraction of pore width filled.

Here, we report the fraction of pore width filled as a function of
non-dimensional parameters γ̄w ≡ γVm

wRT and D̄w ≡ DnFceq

ĩ0w
. The pa-

rameter γ̄w corresponds to the ratio of the capillary length to the pore
width and typically has a value on the order of 10−2.34 First, we fix
γ̄w = 0.0118 while varying D̄w and φ̄el . As shown in Fig. 2b, we
find that the non-dimensional parameter D̄w , which is a measure of
how diffusion-limited or reaction-kinetics-limited the growth is,21,35

has a strong influence on the fraction of pore width filled. For sys-
tems that are more diffusion-limited, less of the pore width is filled,
as expected since flatter growth fronts tend to become unstable un-
der more diffusion-limited conditions. A transition from incomplete
to complete pore filling occurs at approximately D̄w = 2. This is
consistent with the fact that most experimentally reported electrode-
posited nanowires completely fill the width of template pores, since
in practice, usually D̄w � 1.

Furthermore, as shown in Fig. 2c, we find that as the non-
dimensionalized electrode potential φ̄el becomes more negative,
growth becomes more diffusion-limited and less of the pore width
is filled, in agreement with experimental observations of Bi1−x Sbx

nanowire growth.33 Finally, for fixed D̄w = 0.5, Fig. 2d shows
that varying the interfacial energy of the electrodeposit-electrolyte
interface also influences the fraction of pore width filled by the
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Figure 1. (a) Representative configurations from a 3D phase-field simulation of metal (red) electrodeposited into a porous template. The front half of the template
(gray) is cut away for clarity. (b) Representative configurations from a 3D phase-field simulation of nanowire growth in a single cylindrical pore, whose wall is
shown in translucent gray.

nanowire. For larger magnitudes of φ̄el , which lead to more diffusion-
limited growth, the trend resembles that of viscous fingering in Hele-
Shaw cells, where the governing equations are similar to those here
in the limit of entirely diffusion-limited growth.36

In summary, our simulations predict the conditions under which
incomplete filling of the pore width occurs. We note that at large
applied overpotentials, hollow nanotubes have been experimentally
observed,29,37 but our model cannot produce hollow structures since

we do not account for hypothesized mechanisms such as surface con-
duction effects29 or hydrogen bubble formation.37

Electrodeposition within and overflowing a template.—Next, we
perform phase-field simulations of electrodeposition into and over-
flowing a template with many straight pores. In order to model the
effect of stirring the electrolyte bath, we set the diffusivity of the elec-
trolyte to be 20 times larger above the template than inside the pores.

Figure 2. (a) Schematic of a nanowire (red) that does not completely fill the width of the pore, whose walls are shown in gray. (b) Fraction of pore width filled is
plotted as a function of D̄w , (c) φ̄el , and (d) γ̄w .
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Figure 3. Representative configurations of phase-field simulations of electrodeposition into a template at various times, for (a) φ̄el = −8 and (b) φ̄el = −12. (c)
Time evolution of the magnitude of the average current density, for various values of applied potential. (d) The average nanowire length decreases as the relative
diffusivity of the template material increases and the pore wall thickness decreases.

We designate one pore at the center of the simulation to have a greater
growth rate than the others by setting i0 to be two times greater in
the central pore than in all of the other pores, thereby modeling side
reactions that reduce the reaction rate in all pores other than the central
one by for example producing gas bubbles38 or forming passivating
surface layers. We have found that our simulations produce similar
results when faster growth in the central pore is induced by either pore
branching or a locally higher value of D instead of a locally higher
value of i0.

Figures 3a and 3b show series of representative configurations from
phase-field simulations of electrodeposition into a template where
φ̄el = −8 and φ̄el = −12 respectively. From these simulations we can
determine the average current density as a function of time by tracking
the total amount of material deposited as a function of time, assuming
that all current is associated with deposit growth, and normalizing
by the area of the template. As shown in Fig. 3c, the time evolution
of the current density exhibits qualitative behavior similar to what
has been observed experimentally.8,15,18,19,39,40 The magnitude of the
current density initially decreases as the diffusion layer expands, then
increases slowly while the nanowires grow within the pores, and
finally increases rapidly when the deposit overflows the template.
In agreement with experiments,8 a more negative applied potential
results in shorter nanowires in the majority of pores due to the more
diffusion-limited conditions that lead to greater acceleration during
the growth process.

Next, we explore how a non-zero effective ionic diffusivity within
the template material affects growth, since small cracks in the tem-
plate may introduce the possibility of ionic diffusion between adjacent
pores. Fixing φ̄el = −12 in order to simulate highly diffusion-limited
conditions, we vary the relative diffusivity of the pore walls Dwall

D as

well as the scaled pore wall thickness wwall
L and measure the resulting

average scaled length davg

L of the n = 22 nanowires surrounding the

central fast-growing one. As shown in Fig. 3d, davg

L decreases rapidly
as Dwall

D increases from 0, but this effect can be reduced by increas-
ing the thickness of the pore walls. This reduction in nanowire length
arises because growth of neighboring nanowires becomes competitive
when ions are permitted to diffuse laterally between pores, as ionic
current concentrates on the tips of longer nanowires at the expense of
neighboring shorter nanowires. This shielding effect leads to a reduc-
tion in average nanowire length by amplifying discrepancies between
the lengths of nanowires in adjacent pores. Furthermore, increasing
the ionic diffusivity of the template material reduces overall ion trans-
port limitations, leading to faster growth of the leading nanowire and
earlier formation of the cap, which blocks further growth at an earlier
time.

We also explore the effect of pore wall diffusivity on electrode-
position in templates with uniform growth conditions but with ini-
tial seed radii drawn from a normal distribution. Figures 4a and
4b show representative configurations over time from simulations
where Dwall

D = 0 and Dwall
D = 0.03 respectively. Increasing the

pore wall diffusivity broadens the distribution of nanowire lengths
but does not introduce a separate second growth front, as demon-
strated both in Fig. 4c, which shows the growth trajectories of
each of the 40 nanowires in Fig. 4b, and in Fig. 4d, which shows
the evolution of the nanowire length distribution over time for
Dwall

D = 0.03 averaged over 15 simulations with different initial
conditions. Pores that have overflowed to form caps are counted
as d

L = 1. A characteristic effect of non-zero pore wall diffusivity
is an anti-correlation of the lengths of nearest neighbor nanowires
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Figure 4. Representative configurations of phase-field simulations of electrodeposition into a template at various times, for (a) Dwall
D = 0 and (b) Dwall

D = 0.03.
(c) Normalized nanowire length over time for each of the 40 nanowires in (b). Colors only distinguish trajectories and do not have any meaning. (d) Evolution of
the nanowire length distribution over time for Dwall

D = 0.03, averaged over 15 simulations with different initial conditions. (e) Averaged autocorrelation coefficient

as a function of number of pores apart r , showing anti-correlation of nearest neighbors when Dwall
D > 0.

due to competitive growth. Figure 4e plots the autocorrelation

coefficient C(r ) =
∑N

i=1(di −davg )(di+r −davg )∑N
i=1(di −davg )2 of the nanowire lengths at

t̄ = 14.4 averaged over 15 simulations with different initial condi-
tions, where r is the number of pores apart and periodic boundary
conditions are accounted for. When the pore walls are imperme-
able to ionic diffusion, C(r ≥ 1) takes on small values, indicating
lengths are uncorrelated, whereas when the pore wall diffusivity is
greater than zero, C(r = 1) is significantly negative, indicating anti-
correlation of neighboring nanowire lengths. Our results suggest that
if there is indeed non-zero ionic diffusion within the template ma-
terial, then strategies to reduce pore wall diffusion such as apply-
ing compressive stress to the template or increasing the thickness of
pore walls may lead to an increase in average nanowire length and
homogeneity.

Effect of variations in pore cross-sectional area over the template
height.—Next, we study the effect of template morphology on the
growth of the electrodeposit. Pore branching is a commonly observed
defect in commercial AAO membranes that has been hypothesized to
cause differences in nanowire lengths.8 Pore diameters are also often
non-uniform over the height of the membrane,15 and pores of varying
cross-sectional area have been intentionally fabricated experimentally
in ion-track-etched membranes.6 Representative configurations from
2D phase-field simulations are shown in Fig. 5. Growth is faster when
the total cross-sectional area increases with distance from the bottom
of the template, whereas growth is slower if the total cross-sectional
area decreases with height. As we shall see below, this effect can be

attributed to the vertical asymmetry of the pore cross-sectional area,
since a greater cross-sectional area in the upper part of the pore leads
to a lower diffusional resistance for a greater duration of the growth
process and therefore faster overall growth compared to a pore with
oppositely distributed cross-sectional area.

To study in greater detail the effects of pore cross-sectional area
variations, we perform 1D numerical simulations of the Fick-Jacobs
equation,41,42 which describes effective 1D diffusion in a 3D pore with
cross-sectional area profile A(z) and impermeable walls:

∂ ĉ

∂t
= 1

A(z)

∂

∂z

(
D A(z)

∂ ĉ

∂z

)
. [9]

Here, ĉ denotes the concentration at z averaged over the cross-sectional
area. The Fick-Jacobs equation is an accurate description of diffusion
in a 3D channel when the pore is long enough that the concentration
equilibrates much faster in the transverse direction than along the
length of the pore, and the pore width does not vary too rapidly as a
function of z.41,42

Assuming entirely diffusion-limited conditions and cs
ceq

� 1 so
that the concentration approximately attains its steady-state profile at
each time, we derive that the time tc to fill a pore with cross-sectional
area profile A(z), relative to the pore-filling time of a straight pore
tc,straight , is given by (see Appendix A for the derivation)

tc

tc,straight
≡ s = 2

L2

∫ L

0

(
A(z)

∫ L

z

1

A(z′)
dz′

)
dz. [10]
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t̄ = 0 t̄ = 2.2 t̄ = 4.4 t̄ = 6.6 t̄ = 11t̄ = 8.8

Figure 5. Series of representative configurations over time from a 2D phase-field simulation of nanowire growth in straight and branched pores demonstrating
differences in growth rates for differently shaped pores.

The non-dimensional parameter s defined in Eq. 10 is a function
of the pore geometry alone, and is a measure of how asymmetrically
the pore cross-sectional area is distributed over the height of the pore.
In the limit where A(z) is everywhere close to its average value, s can
be approximated as (see Appendix A for the derivation)

s ≈ − 4

L

(∫ L
0 z A(z)dz∫ L
0 A(z)dz

− L

2

)
+ 1, [11]

which states that s is proportional to the distance from the centroid of
A(z) to the center of the pore, so that if the centroid of A(z) lies above
(below) the midpoint of the pore, then s < 1 (s > 1).

For concreteness, we now consider a pore with linearly varying
cross-sectional area, as shown schematically in 2D in Fig. 6a, where

A(z) = Ab

[
1 +

(
At

Ab
− 1

)
z

L

]
. [12]

Here, At is the cross-sectional area at the top of the pore, and Ab is the
cross-sectional area at the bottom of the pore, so At

Ab
characterizes how

sloped the pore is. We perform numerical simulations of the 1D mov-
ing boundary problem defined by substituting Eq. 12 into Eq. 9, with
boundary conditions at the electrodeposit-electrolyte interface given
by Eqs. 2–4 for simulations labeled ii

ilim
< 1 below. For simulations

labeled i
ilim

= 1 below, we use the interfacial boundary condition

ĉ = 0 instead of Eq. 2. Here, ilim = nFDceq

L is the limiting current
density, and ii is the initial current density associated with a given φ̄el

assuming the concentration has instantly relaxed to a linear profile.
Figure 6b shows growth trajectories for i

ilim
= 1, when growth is

limited entirely by diffusion. As expected, growth is faster in pores

with larger values of At
Ab

, which correspond to lower values of s and

therefore lower values of tc
tc,straight

. At the time when the pore with
At
Ab

> 1 becomes completely filled and would start forming a cap that
blocks growth in surrounding pores, we can extract the normalized
length

dstraight

L of a nanowire in a straight pore that began growing at
the same time. This procedure can be repeated for various values of
At
Ab

to determine what the length in a straight pore would be when
a pore that promotes faster growth is filled and starts blocking its
neighboring pores. Thus, if we assume that the average pore is per-
fectly straight, so that s = 1, then

dstraight

L represents the average non-
dimensionalized nanowire length when a pore characterized by s is
filled.

As shown in Fig. 6c, for i
ilim

= 1,
dstraight

L decreases rapidly as

s departs from 1. We also perform simulations where ii
ilim

< 1 by
using the Butler-Volmer equation as an interfacial boundary condi-
tion and applying different potentials. As ii

ilim
is decreased by low-

ering the magnitude of the applied potential, growth becomes less
diffusion-limited and

dstraight

L increases, so that variations in s have
less influence on nanowire lengths. This is consistent with previous
theoretical modeling8 as well as experimental observations that re-
ducing the overpotential or using pulsed potentials, which reduce
how diffusion-limited the growth is, improves the homogeneity of
nanowire lengths.4,8,18

Indeed, previous studies have drawn attention to the importance
of template uniformity,4,8 and templates with more disordered pores
have been experimentally observed to lead to more non-uniform
electrodeposition.43 Our results highlight that the property of the
template pores that determines the growth rate is the parameter s

Figure 6. (a) Schematic of a pore with cross-sectional area that varies with height z. (b) Comparison of how nanowire length varies over time in pores with
different cross-sectional area profiles. The vertical dashed line indicates the time when the deposit in a pore with At

Ab
= 5

3 reaches the end of the pore and the
horizontal dashed line indicates the position of a nanowire in a straight pore at that time. (c) Position of a nanowire in a straight pore at the time a nanowire in a
pore with At

Ab
≥ 1 has reached the end of the template, as a function of s for the pore with At

Ab
≥ 1. The red shaded region indicates the regime where At

Ab
≥ 2,

which correspond to large slopes that are unlikely in practice.
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defined in Eq. 10, which characterizes the asymmetry in the distri-
bution of pore cross-sectional area over the height of the template.
Additionally, since Fig. 6c shows that the average scaled nanowire
length

dstraight

L does not fall below approximately 0.4 even when s
takes on rather extreme values, we can deduce that pore cross-sectional
area variations are unlikely to fully explain the large nanowire length
differences that have been observed experimentally in bismuth and
bismuth-tin alloys12,33 as well as copper deposited at large overpoten-
tials into high-aspect-ratio pores.8

Framework for Statistical Analysis of Nanowire Length
Distributions

Having studied nanowire growth via electrodeposition within tem-
plates comprising a small number of pores, we now turn to the be-
havior of statistically large collections of electrodeposited nanowires.
Specifically, we develop a framework for analyzing nanowire length
distributions, which may be extracted from experimental images such
as those commonly reported in the literature.3,8,12,39,44,45 First, we use
various statistical methods to assess whether nanowire length distri-
butions that appear to have two separate peaks are better modeled as
bimodal or right-skewed unimodal. Then, we use standard tools from
probability theory to extract the probability distributions of nucle-
ation times or growth rates that would lead to a given nanowire length
distribution.

Nanowire length distribution: bimodal vs. unimodal.—For con-
creteness, we focus on the experimental SEM image from Ref. 44
reproduced in Fig. 7a, which shows platinum nanowires in a cross-
section of AAO template. We measure the nanowire lengths by man-
ually tracing each nanowire in the image-analysis software FIJI46 to
obtain a representative dataset of nanowire lengths. We estimate the
average total length using an accompanying lower-magnification SEM
image (Fig. 2a in Ref. 44) that shows the entire length of the nanowires.

Note that there is a significant amount of uncertainty in our length
measurements as it is difficult to distinguish individual nanowires in
the image and the sample size is small, so these measurements are
primarily meant to demonstrate our proposed framework rather than
to precisely analyze particular experimental results. An ideal image
for extracting nanowire length distributions would allow a single row
of individual nanowires to be clearly resolved so that the length of
each nanowire can be accurately measured.

Frequently, the electrodeposition of nanowires appears to proceed
with a double growth front,4,8,44 but it is not clear whether there are in-
deed two separate peaks in the nanowire length distribution or whether
the small number of longer nanowires comprise the tail of a skewed
single-peaked distribution. If the distribution were bimodal, that may
suggest the presence of multiple mechanisms for length differences
or that different subpopulations of nanowires experience different nu-
cleation or growth conditions. Previous analyses of the distribution of
overgrowth cap areas for copper electrodeposited in AAO templates
found cap areas to be bimodal for high ion concentrations,31 but caps
only reveal information about deposits that have reached the end of
the template. Here we compute several statistical measures of uni-
modality for nanowire length distributions extracted from images of
partially filled pores.

First, we compare the Akaike Information Criterion (AIC) of a
Gaussian mixture model and a log-normal model. AIC is a method
based on information theory for selecting a “best approximating
model”, where an AIC value is computed for each candidate model
and the model with the minimum AIC value is considered the best.47

We use the “mclust” package in R48 to fit a mixture of two Gaus-
sian distributions to the nanowire length data, as shown in Fig. 7b.
We then fit the same nanowire length data to a single log-normal
distribution using the “fitdistr” function in the “MASS” package in
R,49 as shown in Fig. 7c. From the log-likelihoods of the models,
we calculate for each model the corrected Akaike Information Cri-
terion AI Cc = −2 ln Lm + 2k + 2k(k+1)

n−k−1 , where Lm is the maxi-
mum likelihood of the model, k is the number of model parameters,

Figure 7. (a) Experimental SEM image of the ends of platinum nanowires (light) in an AAO template (dark), reproduced with permission from Ref. 44. (b) Scaled
histogram of nanowire lengths with a scatterplot of the lengths shown under the x-axis. The black curve is a fitted mixture of two Gaussians. (c) Same scaled
histogram and scatterplot of nanowire lengths, shown with fitted log-normal distribution.
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Table I. Summary of transformations between a nanowire length distribution and a distribution of either nucleation times or pore-filling

times. The transformation functions are derived from the growth trajectory d(t)
L = 1 −

√
1 − (t−tnucl )

tc
, and the transformation is calculated via

fX (x) =
∣∣∣ dg

dx

∣∣∣ fY (g(x)), where fY is a known probability density function of nanowire lengths.

variable nucleation time pore-filling time

transformation function g(x) = 1 −
√

1 −
(

teval
tc

− x
)

g(x) = 1 −
√

1 − (teval −tnucl )
tc,peak

1
x

x tnucl
tc

tc
tc,peak

constant parameter teval
tc

(teval −tnucl )
tc,peak

and n is the number of data points.47 We find that AI Cc,1 = −697
for the Gaussian mixture model and AI Cc,2 = −636 for the log-
normal model, from which we calculate that the respective Akaike
weights wi = exp(−�i /2)

R∑
r=1

exp(−�r /2)
where �i = AI Cc,i − AI Cc,min are

w1 = 1 − 4.3 × 10−14 and w2 = 4.3 × 10−14. The significantly
higher Akaike weight of the Gaussian mixture model suggests that it
is much more likely than the log-normal model to explain the observed
data.

To test for unimodality more generally using non-parametric ap-
proaches, we perform Silverman’s kernel density estimate multi-
modality test with Hall and York’s adjustment using the “silverman-
test” package in R.50–52 We find that the p-value is p = 0.010 < 0.05,
so we reject the null hypothesis that the nanowire length distribu-
tion is unimodal. Finally, we perform Hartigans’ dip test using the
“diptest” package in R.53,54 The dip test gives a p-value of p = 0.996,
which does not support rejecting the null hypothesis that the distri-
bution is unimodal. Keeping in mind that these non-parametric tests
are quite conservative, we conclude from our three analyses that the
nanowire distribution studied here is most likely bimodal, but we note
that modality assessment is in general a challenging problem that is
rendered particularly difficult here due to the small number of data
points and the uncertainty in the data. In order to classify a nanowire
length distribution as bimodal with greater certainty, experimental
images that yield a larger number of nanowire length measurements,
with greater accuracy, are needed.

Determining nucleation time or growth rate distributions from
nanowire length distributions.—Next, we determine the variations in
nucleation times or growth rates that would be required to lead to an
observed distribution of nanowire lengths. Here we assume that each
nanowire grows independently and the length of each nanowire varies
with time according to Eq. 13 below, which was derived in Ref. 12
and holds for 1D growth limited only by diffusion:

d(t) = L −
√

L2 − 4β2 D(t − tnucl ), [13]

where β satisfies βe−β2
erfi(β) = ceq

cs
√

π
, d is the nanowire length, L

is the pore length, tnucl is the time at which nucleation occurs, and
erfi(β) = 2√

π

∫ β

0 et2
dt is the imaginary error function. This growth

trajectory can be written in non-dimensionalized form as

d(t)

L
= 1 −

√
1 − (t − tnucl )

tc
, [14]

where tc =
(

L
2β

√
D

)2
is the time it takes for the deposit to reach the

end of the pore. Here, only growth inside the pore is considered, so
0 ≤ d

L ≤ 1 and 0 ≤ t−tnucl
tc

≤ 1.
Equation 14 describes the dependence of nanowire length on nu-

cleation time and growth rate, which in turn depends on D through tc.
In order to use Eq. 14 to relate probability distributions of these val-
ues, Eq. 14 can be viewed as a one-to-one transformation Y = g(X )
that maps a random variable X , such as the nucleation time or
pore-filling time, to a resulting random variable Y , such as the non-

dimensionalized nanowire length. If the probability density function of
the variable X is given by fX (x), so that the probability that a ≤ X ≤ b
is

P(a ≤ X ≤ b) =
∫ b

a
fX (x)dx, [15]

then the probability density function of Y is given by the transforma-
tion of variables formula55

fY (y) = fX (x)∣∣ dg
dx

∣∣ , [16]

where

x = g−1(y), [17]

and the probability that g(a) ≤ Y ≤ g(b) is

P(g(a) ≤ Y ≤ g(b)) =
∫ g(b)

g(a)
fY (y)dy. [18]

The reverse transformation, from a probability density function of Y
to X , is thus given by

fX (x) =
∣∣∣∣ dg

dx

∣∣∣∣ fY (g(x)). [19]

Here we will consider transformations of two possible variables, as
summarized in Table I and explained further below.

First, let us calculate the nucleation time distribution corresponding
to a given nanowire length distribution, assuming all variations in
nanowire lengths are due to differences in nucleation times. Thus, we
assume that tnucl may vary for different pores, but tc is the same for
all pores. Let fY (y) be the nanowire length distribution and let fX (x)
be the corresponding distribution of nucleation times. Thus, x = tnucl

tc

represents the non-dimensionalized nucleation time, y = d
L represents

the non-dimensionalized nanowire length, and we additionally define
teval

tc
to be the non-dimensionalized time at which the nanowire lengths

are evaluated. The transformation function is therefore

g(x) = 1 −
√

1 −
(

teval

tc
− x

)
. [20]

Figure 8a shows the nanowire length distribution that we will
consider as an example here, namely the mixture of two Gaussians
fitted above. Using Eqs. 19 and 20, we transform the fitted proba-
bility density function of nanowire lengths to find its corresponding
nucleation time distribution, which is shown in Fig. 8b. Here we use
teval

tc
= 0.537, which corresponds to the time since nucleation of the

longest nanowire for which the probability density function is greater
than 0.01. Note that integrating the nucleation time distribution gives
the fraction of all nanowires that have nucleated as a function of time,
as shown in Fig. 8c. We characterize the characteristic time over which
nucleation occurs using the full-width half-maximum (FWHM) of the
larger peak of the nucleation time distribution, and here we find that
nucleation occurred over 2.6% of the pore-filling time. We can com-
pare this value to the nucleation time scale inferred from early-time
current transients, since the time over which the total current at early
times experiences a peak indicates the time over which nucleation is
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Figure 8. (a) Input distribution of nanowire lengths at time teval
tc

= 0.537, (b) corresponding distribution of nucleation times, and (c) number of nuclei as a function
of time, computed from the nucleation time distribution. (d) The time scale over which nucleation occurs increases with standard deviation in nanowire lengths,
assuming Gaussian distributions of nanowire lengths.

occurring.3,56 Experimentally observed early-time current transients
in the literature suggest that most nucleation occurs within the first
0.1% of the total pore-filling time.3 Therefore, for the data analyzed
here, entirely attributing the observed spread in nanowire lengths to a
spread in nucleation times would significantly overestimate the time
over which nucleation occurred.

More generally, we can calculate the spread in nucleation times
necessary to produce a Gaussian distribution of nanowire lengths with
arbitrary mean μd/L and standard deviation σd/L , as shown in Fig. 8d.
Here, we again characterize the spread in nucleation times by the
FWHM of the peak of the probability density function of tnucl

tc
, denoted

FW H Mtnucl /tc . Figure 8d thus predicts the spread in nucleation times
that corresponds to a given nanowire length distribution, assuming
differences in nucleation times are the only cause of nanowire length
differences and growth conditions are entirely diffusion-limited. As
expected, the spread in nucleation times increases as σd/L increases,
and the spread in nucleation times decreases as μd/L increases, since
nanowire growth accelerates over time so the spread in nanowire
lengths increases as the average length increases.

Next, let us instead assume that all variations in nanowire lengths
arise due to differences in growth rates, in order to investigate result-
ing growth rate distributions. That is, we assume that t − tnucl is the
same in all pores, while the pore-filling time tc may take on different
values in different pores. We also assume that growth in all of the
pores still follows Eq. 14 so that tc alone is sufficient to character-
ize growth rates (see Appendix C for analysis of this assumption).
Figure 9a shows schematically the transformation from a distribution
of nanowire lengths to a distribution of pore-filling times. To facil-
itate interpretation of pore-filling time distributions, we scale times
by tc,peak , which we define as the value of tc that corresponds to the
nanowire length dpeak of maximum probability density, and we rewrite
the nanowire growth trajectory as

d(t)

L
= 1 −

√
1 − (t − tnucl )

tc,peak

tc,peak

tc
. [21]

Given a nanowire length distribution, we first calculate the value of
the scaled time since nucleation (teval −tnucl )

tc,peak
using (teval −tnucl )

tc,peak
= 1 −(

dpeak

L − 1
)2

. Then, we can use the transformation

g(x) = 1 −
√

1 − (teval − tnucl )

tc,peak

1

x
[22]

to transform from the probability density function fY (y) of the non-
dimensionalized nanowire length y = d

L to the probability density
function fX (x) of the relative pore-filling time x = tc

tc,peak
.

Let us again use as an illustrative example the mixture of two
Gaussians fitted above, which is plotted again in Fig. 9b. Using Eq. 22
and Eq. 19, we determine the distribution of tc

tc,peak
that corresponds

to the given distribution of nanowire lengths, as shown in Fig. 9c. If
we assume that variations in pore-filling times are entirely attributable
to variations in the template morphology, and we further assume that
tc,peak = tc,straight , then the distribution shown in Fig. 9c is equivalent
to the distribution of s, where s (defined in Eq. 10) is a measure of the
asymmetry of the pore cross-sectional area profile along the height
of the pore. Thus, assuming tc

tc,peak
= s, the small spread in each of

the peaks shown in Fig. 9c appears reasonable for the well-ordered
AAO template that was used in the experiments. In conjunction with
the analysis of nucleation times above, we conclude that for the data
analyzed here, variations in pore geometry are a more plausible cause
of the observed spread in each peak of the nanowire lengths than
variations in nucleation times. This is also consistent with the fact that
other experiments12,15 that used more disordered templates observed
significantly larger spreads in nanowire lengths than in the example
studied here.

In order to predict distributions of pore-filling times more gener-
ally, we calculate the spread in tc

tc,peak
necessary to produce Gaussian

distributions of nanowire lengths with arbitrary means μd/L and stan-
dard deviations σd/L , as shown in Fig. 9d. Again, if we assume that

tc
tc,peak

= s, then, similarly to Fig. 8d, Fig. 9d predicts the minimum
amount of template inhomogeneity required to produce an observed
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Figure 9. (a) Schematic illustration of a distribution of scaled nanowire lengths with peak at
dpeak

L , corresponding scaled time (teval −tnucl )
tc,peak

, and corresponding

distribution of scaled pore-filling times tc
tc,peak

. (b) Input distribution of scaled nanowire lengths. (c) Corresponding distribution of scaled pore-filling times. (d)

Spread in tc
tc,peak

increases with standard deviation of nanowire lengths, assuming distributions of d
L are Gaussian. Assuming all variations in growth rates are due

to pore geometry and assuming tc,peak = tc,straight implies that tc
tc,peak

= s.

distribution of nanowire lengths characterized by μd/L and σd/L , which
can be roughly estimated by inspection from experimental SEM im-
ages. If it were possible to experimentally control and measure the
distribution of pore shapes, then a comparison of the measured and
predicted s distributions would allow our predictions to be tested,
yielding insight on whether differences in pore geometry indeed con-
tribute significantly to nanowire length variations.

In summary, by assuming that growth in each pore is indepen-
dent and follows a particular trajectory, we have shown that simple
transformations can be used to relate nanowire length distributions to
corresponding distributions of either nucleation times or growth rates.
By comparing these predicted distributions to experimental measure-
ments using different techniques, the assumptions used in the trans-
formations can be tested and a better understanding of nucleation and
growth in these systems can be developed. Here, we have assumed
that nanowires follow an entirely diffusion-limited growth trajectory
that does not account for parameters such as the applied potential and
is only very weakly dependent on the electrolyte concentration. Since
both overpotential and electrolyte concentration have been observed
to significantly affect nanowire length uniformity,57 we expect that
accounting for these effects would further improve the accuracy of
the distribution predictions. For example, lower overpotentials would
lead to less diffusion-limited conditions and thus less acceleration
during growth, so that greater pore-to-pore variations in nucleation
times or growth rates would be necessary to cause a given spread
in nanowire lengths. On the other hand, in practice it is likely that
multiple effects combine to cause a given spread in nanowire lengths,
so that small variations in each individual factor may be sufficient to
lead to significant nanowire length inhomogeneity.

Another mechanism for pore-to-pore variations in nanowire
lengths that we have not accounted for is the presence of side re-
actions. We hypothesize that side reactions may explain nanowire
length differences that are too large to be explained by other mecha-
nisms, since side reactions may slow growth in a majority of pores by,
for example, blocking the pores with gas bubbles, while growth rates

remain significantly higher in a small number of unaffected pores.
Experimentally it has been found that bubbles formed from hydro-
gen reduction can inhibit the growth of nickel nanowires deposited at
high overpotentials,38 and visible gas generation has been observed at
high overpotentials.3 In addition, experimentally observed early-time
current transients that exhibit different behavior at different tempera-
tures, along with a decrease in nanowire length uniformity at higher
temperatures,15 may be evidence of thermally activated side reactions
that affect nanowire growth. Thus, the possibility of side reactions
should be accounted for when analyzing nanowire electrodeposition,
especially at high overpotentials.

Conclusions

In this paper we have developed a phase-field model for template-
assisted electrodeposition and demonstrated methods for analyzing
nanowire length distributions that lead to a better understanding of
non-uniform deposit growth. Using 2D and 3D phase-field simu-
lations, we studied the fraction of pore width filled under various
conditions and reproduced characteristic current transients as well as
morphologies that have been observed experimentally when electrode-
posits overflow a template. Our simulations also showed that non-zero
diffusivity of the template material leads to increased non-uniformity
in nanowire lengths due to a shielding effect that leads to competitive
growth. Next, we found that the time required to fill a pore of arbitrary
shape is determined by a parameter that characterizes the asymmetry
in the pore cross-sectional area profile over the height of the template,
so that template inhomogeneities can contribute significantly to dif-
ferences in nanowire lengths. Finally, we demonstrated methods for
analyzing nanowire length distributions that can be extracted from ex-
perimental SEM images. We investigated whether a nanowire length
distribution was better modeled as bimodal or right-skewed unimodal,
and we used transformations of probability distributions to calculate
the spreads in nucleation times or growth rates necessary to cause
given spreads in nanowire lengths.
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Our nanowire length distribution transformations led us to con-
clude that, for the example from the literature that we considered, the
spread in the majority of nanowire lengths is most likely caused pri-
marily by a spread in growth rates rather than a spread in nucleation
times. More broadly, we hope that the theoretical predictions presented
here can be used in conjunction with experimental measurements of
nanowire lengths, nucleation times, and pore geometry variations to
better understand template-assisted electrodeposition. In closing, we
emphasize that the analysis presented here is applicable not only to
electrodeposition in porous templates but also to the growth of mate-
rials in any system where interfacial evolution in a confined geometry
is determined by an interplay of diffusion and reaction kinetics.
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Appendix A: Derivations of Expressions for Pore-Filling Time
for Arbitrary Cross-Sectional Area Profiles

Derivation of expression for s.—Here we derive an expression for the time tc to fill
a pore with cross-sectional area profile A(z), relative to the pore-filling time of a straight
pore tc,straight . Assuming cs

ceq
� 1 so that ĉ(z) instantaneously attains its steady-state

profile at each time, Eq. 9 reduces to

d

dz

[
D A(z)

dĉ

dz

]
= 0. [A1]

Assuming entirely diffusion-limited conditions yields the boundary conditions ĉ(z = l) =
0 and ĉ(z = L) = ceq , where l is the length of the nanowire. Integrating Eq. A1 twice and
applying the boundary conditions yields

ĉ(z) = ceq∫ L
l

1
A(z′ ) dz′

∫ z

l

1

A(z′)
dz′. [A2]

Equations 3 and 4 can be combined and written in 1D form to yield

dl

dt
= D

cs

dĉ

dz

∣∣∣∣∣∣
z=l

. [A3]

Substituting the derivative of Eq. 24 evaluated at z = l into Eq. A3 and integrating the
resulting separable differential equation gives:

dl

dt
= D

cs

ceq∫ L
l

1
A(z′ ) dz′

1

A(l)
, [A4]

or ∫ L

0

(
A(l)

∫ L

l

1

A(z′)
dz′

)
dl = Dceq

cs

∫ tc

0
dt, [A5]

or

tc = cs

Dceq

∫ L

0

(
A(l)

∫ L

l

1

A(z′)
dz′

)
dl. [A6]

Finally, normalizing by tc,straight = L2cs
2ceq D and writing z instead of l for clarity gives

tc
tc,straight

= s [A7]

where

s ≡ 2

L2

∫ L

0

(
A(z)

∫ L

z

1

A(z′)
dz′

)
dz. [A8]

Derivation of approximate expression for s.—Here we derive an approximate ex-

pression for s under the assumption that A(z) ≈
∫ L
0 A(z)dz

L ≡ Ā, so that A(z) is everywhere
close to its average value. This implies that we can Taylor expand 1

A(z) to yield:

1

A(z)
= 1

Ā
+ (A(z) − Ā)

( −1

Ā2

)
+ O((A(z) − Ā)2) [A9]

≈ 2

Ā
− A(z)

Ā2
. [A10]

Substituting Eq. A10 into Eq. 10 gives

s ≈ 2

L2

∫ L

0

(
A(z)

∫ L

z

[
2

Ā
− A(z′)

Ā2

]
dz′

)
dz [A11]

≈ 2

L2

(∫ L

0
A(z)

2

Ā
(L − z)dz −

∫ L
0 A(z)

∫ L
z A(z′)dz′dz

Ā2

)
[A12]

≈ 2

L2

(
2L2 − 2

∫ L
0 z A(z)dz

Ā
− L2

2

)
[A13]

≈ − 4

L

∫ L
0 z A(z)dz∫ L
0 A(z)dz

+ 3 [A14]

≈ − 4

L

( ∫ L
0 z A(z)dz∫ L
0 A(z)dz

− L

2

)
+ 1, [A15]

where we used
∫ L
0 A(z)

∫ L
z A(z′ )dz′dz

(L Ā)2
= 1

2 , which is shown next.

Let F(z) = ∫ z A(z′)dz′. Then,∫ L
0 A(z)

∫ L
z A(z′)dz′dz(∫ L

0 A(z)dz
)2 =

∫ L
0 F ′(z)[F(L) − F(z)]dz

[F(L) − F(0)]2
[A16]

= F(L)[F(L) − F(0)] − ∫ L
0 F ′(z)F(z)dz

[F(L) − F(0)]2
[A17]

= F(L)[F(L) − F(0)] − F(L)2−F(0)2

2

[F(L) − F(0)]2
[A18]

= 1

2
[A19]

Appendix B: Comparison of Planar Phase-Field Simulations,
1D Sharp-Interface Simulations, and Analytical Solutions

In order to validate our phase-field and 1D sharp-interface simulations, we compare
numerical simulation results to the analytical solution from Ref. 12, which is valid in the
limit of completely diffusion-limited growth:

d(t)

L
= 1 −

√
1 − t

tc
[B1]

where tc =
(

L
2β

√
D

)2
and β satisfies βe−β2

erfi(β) = ceq
cs

√
π

. The corresponding magnitude

of the current density is:

|i(t)| = nFcs L

2tc
√

1 − t
tc

. [B2]

At early times when t < tlim ≡ L2

πD , we also compare our numerical simulations to the
Cottrell equation:56

|iCottrell (t)| = nFceq

√
D√

πt
[B3]

and its corresponding equation for position as a function of time:

dCottrell (t)

L
= 2ceq

√
Dt

cs L
√

π
. [B4]

Figure BI shows comparisons of the numerical simulations with the analytical expressions
over the entire growth time as well as at early times. For the numerical simulations,
φ̄el = −13 was used in order to simulate highly diffusion-limited conditions.

Appendix C: Nanowire Growth in Pores with Varying
Cross-Sectional Areas

We justify using only tc to characterize growth rates in pores with different linearly
varying cross-sectional area profiles because the growth trajectories of the differently
sloped pores are nearly the same when time is scaled by each respective pore-filling time
tc , as shown in Fig. C1a. We also perform 1D sharp-interface simulations to determine
the pore-filling time for different forms of A(z), as shown in Fig. C1b, and confirm that

tc
tc,straight

= s. In addition to pores with linearly varying areas over the entire height of the

template, we considered pores that are linearly sloped over only a fraction of the height
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Figure B1. (a) Comparison of scaled nanowire length d
L as a function of scaled time t

tc
from a planar 2D phase-field simulation, a 1D numerical simulation of

the sharp-interface equations, and Eq. B1. (b) Comparison of the corresponding scaled current density magnitude vs. scaled time. (c) Comparison at early times
of scaled nanowire length vs. scaled time for a 1D sharp-interface simulation and the growth trajectory implied by the Cottrell equation. (d) Comparison at early
times of the corresponding scaled current density magnitude vs. scaled time.

Figure C1. (a) d
L vs. t

tc
for linearly sloped pores with different values of At

Ab
. (b) tc

tc,straight
vs. s for pores with different forms of A(z).

of the template, while the remaining parts of the pore are straight and A(z) is continuous.
We also considered sinusoidally varying A(z) with different wavelengths and with phases
such that A(z) is not symmetric about z

L = 0.5. Note that here we only show the time
required to completely fill a pore. At intermediate times before the pore is completely
filled, the position of the growth front varies substantially depending on the particular
shape of the pore.
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